Finding Similar Items I

Alexander Schönhuth

Bielefeld University April 30, 2020

TODAY

Features Today

- Lecture will be recorded, edited and posted
- Arsnova:
- Session ID: 50395809 (also pasted into Zoom chat today)
- Use Case: "Questions / Comments from Audience" (German: "Kummerkasten")
- Session will be active throughout semester
- I will (be happy to) respond whenever I can

Learning Goals

- Turning documents into sets shingles
- Computing the similarity of sets minhashing

Finding Similar Items: Introduction

Finding Similar Items

Fundamental problem in data mining: retrieve pairs of similar elements of a dataset.

Applications

- Detecting plagiarism in a set of documents
- Identifying near-identical mirror pages during web searches
- Identifying documents from the same author
- Collaborative Filtering
- Online Purchases (Amazon: suggestions based on 'similar' customers)
- Movie Ratings (Netflix: suggestions based on 'similar' users)

ISSUES

Consider a dataset of N items, for example: N webpages or N text documents.

- Comparing all items requires $O\left(N^{2}\right)$ runtime.
- Ok for small N.
- If $N \approx 10^{6}$, we have 10^{12} comparisons. Maybe not OK!
- How to efficiently compute similarity if items themselves are large?
- Similarity works well for sets of items. How to turn data into sets of items?

Overview

From mmds.org

- Shingling: turning text files into sets
- Minhashing: computing similarity for large sets
- Locality Sensitive Hashing: avoids $O\left(N^{2}\right)$ comparisons by determining candidate pairs

Shingles
 Turning Documents into Sets

Jaccard Similarity

Definition [Jaccard Similarity]

Consider two sets S and T. The Jaccard similarity $\operatorname{SIM}(S, T)$ is defined as

$$
\begin{equation*}
\operatorname{SIM}(S, T)=\frac{|S \cap T|}{|S \cup T|} \tag{1}
\end{equation*}
$$

the ratio of elements in the intersection and in the union of S and T.

SHINGLES: DEFINITION

- Document = large string of characters
- k-shingle: a substring of a particular length k
- Idea: A document is set of k-shingles
- Example: document $=$ "acadacc",k-shingles:

$$
\{a c, a d, c a, c c, d a\}
$$

- We can now compute Jaccard similarity for two documents by considering them as sets of shingles.
- Example: documents $D_{1}=" a b c d ", D_{2}=" d b c d "$ using 2-shingles yields $D_{1}=\{a b, b c, c d\}, D_{2}=\{b c, c d, d b\}$, so $\operatorname{SIM}\left(D_{1}, D_{2}\right)=\frac{|\{b c, c d\}|}{|\{a b, b c, c d, d b\}|}=2 / 4=1 / 2$

SHINGLES: DEFINITION

- Issue: Determining right size of k.
- k large enough such that any particular k-shingle appears in document with low probability ($k=5$, yielding 256^{5} different shingles on 256 different characters, ok for emails)
- too large k yields too large universe of elements (example: $k=9$ means $256^{9}=\left(2^{8}\right)^{9}=2^{72}$ on the order of number of atoms in the universe)
- Solution if necessary k is too large: hash shingles to buckets, such that buckets are evenly covered, and collisions are rare
- We would like to compute Jaccard similarity for pairs of sets
- But: even when hashed, size of the universe of elements (= \# buckets when hashed) may be prohibitive to do that fast
- What to do?

Minhashing
 Rapidly Computing Similarity of Sets

SETS As Bitvectors

- Representing sets as bitvectors
- Length of bitvectors is size of universal set
- For example, when hashed, length of bitvector = number of buckets
- Entries zero if element not in set, one if element in set
- Does not reflect to really store the sets, but nice visualization

Sets as Bitvectors: the Characteristic Matrix

Definition [Characteristic Matrix]
Given C sets over a universe R, the characteristic matrix
$M \in\{0,1\}^{|R| \times|C|}$ is defined to have entries

$$
M(r, c)= \begin{cases}0 & \text { if } r \notin c \tag{2}\\ 1 & \text { if } r \in c\end{cases}
$$

for $r \in R, c \in C$.

Element	S_{1}	S_{2}	S_{3}	S_{4}
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Characteristic matrix of four sets $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$ over universal set $\{a, b, c, d, e\}$

Permutations

Definition [Bijection,Permutation]

- A bijection is a map $\pi: S \rightarrow S$ such that
- $\pi(x)=\pi(y)$ implies $x=y$ (π is injective)
- For all $y \in S$ there is $x \in S$ such that $\pi(x)=y$ (π is surjective)
- A permutation is a bijection

$$
\begin{equation*}
\pi:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\} \tag{3}
\end{equation*}
$$

Example: A permutation on $\{1,2,3,4,5\}$ may map

$$
1 \rightarrow 4,2 \rightarrow 3,3 \rightarrow 1,4 \rightarrow 5 \text { and } 5 \rightarrow 2
$$

Permuting Rows of Characteristic Matrix

Element	S_{1}	S_{2}	S_{3}	S_{4}					
a	1	0	0	1	Element	S_{1}	S_{2}	S_{3}	S_{4}
b	0	0	1	0		0	0	1	0
c	0	1	0	1		0	0	1	0
d	1	0	1	1		1	0	0	1
e	0	0	1	0	c	1	0	1	1
			c	0	1	0	1		

A characteristic matrix of four sets $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$ over universal set $\{a, b, c, d, e\}$ and a permutation of its rows $1 \rightarrow 3,2 \rightarrow 1,3 \rightarrow 5,4 \rightarrow 4,5 \rightarrow 2$

Minhash - Definition

Given

- a characteristic matrix with m rows and a column S
- a permutation π on the rows, that is $\pi:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}$ is a bijection

Definition [Minhash]
The minhash function h_{π} on S is defined by

$$
h_{\pi}(S)=\min _{i \in\{1, \ldots, m\}}\{\pi(i) \mid S[i]=1\}
$$

Minhash - Definition

Definition [Minhash]
The minhash function h_{π} on S is defined by

$$
h_{\pi}(S)=\min _{i \in\{1, \ldots, m\}}\{\pi(i) \mid S[i]=1\}
$$

Explanation
The minhash of a column S relative to permutation π is

- after reordering rows according to the permutation π
- the first row in which a one in S appears

Minhash - Example

Example

Let

- 1 corresponds to $a, 2$ to b, \ldots
- $\pi: 1 \rightarrow 3,2 \rightarrow 1,3 \rightarrow 5,4 \rightarrow 4,5 \rightarrow 2$ and

Minhashing and Jaccard Similarity

Given

- two columns (sets) S_{1}, S_{2} of a characteristic matrix
- a randomly picked permutation π on the rows (on $\{1, \ldots, m\}$)

Theorem [Minhash and Jaccard Similarity]:
The probability that $h_{\pi}\left(S_{1}\right)=h_{\pi}\left(S_{2}\right)$ is $\operatorname{SIM}\left(S_{1}, S_{2}\right)$.

Minhash and Jaccard Similarity - Proof

Theorem [Minhash and Jaccard Similarity]:
The probability that $h_{\pi}\left(S_{1}\right)=h_{\pi}\left(S_{2}\right)$ is $\operatorname{SIM}\left(S_{1}, S_{2}\right)$.
Proof.
Distinguish three different classes of rows:

- Type X rows have a 1 in both S_{1}, S_{2}
- Type Y rows have a 1 in only one of S_{1}, S_{2}
- Type Z rows have a 0 in both S_{1}, S_{2}

Let x be the number of type X rows and y the number of type Y rows.

- So $x=\left|S_{1} \cap S_{2}\right|$ and $x+y=\left|S_{1} \cup S_{2}\right|$
- Hence

$$
\begin{equation*}
\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}=\frac{x}{x+y} \tag{4}
\end{equation*}
$$

Minhash and Jaccard Similarity - Proof

Proof. (CONT.)

- Consider the probability that $h\left(S_{1}\right)=h\left(S_{2}\right)$
- Imagine rows to be permuted randomly, and proceed from the top
- The probability to encounter type X before type Y is

$$
\begin{equation*}
\frac{x}{x+y} \tag{5}
\end{equation*}
$$

- If first non type Z row is type X , then $h\left(S_{1}\right)=h\left(S_{2}\right)$
- If first non type Z row is type Y , then $h\left(S_{1}\right) \neq h\left(S_{2}\right)$
- So $h\left(S_{1}\right)=h\left(S_{2}\right)$ happens with probability (5), which by (4) concludes the proof.

Minhash - Intermediate Summary / Expansion of Idea

- Computing a minhash means turning a set into one number
- For different sets, numbers agree with probability equal to their Jaccard similarity.
- Can we expand on this idea? Can we compute (ensembles of) numbers that enable us to determine their Jaccard similarity?
- Immediate idea: compute several minhashes. The fraction of times the minhashes of two sets agree equals their Jaccard similarity.
- Several sufficiently well chosen minhashes yield a minhash signature.

Minhash Signatures

Consider

- the m rows of the characteristic matrix
- n permutations $\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}$
- the corresponding minhash functions $h_{1}, \ldots, h_{n}:\{0,1\}^{m} \rightarrow\{1, \ldots, m\}$
- and a particular column $S \in\{0,1\}^{m}$ $h_{i}(S) \in\{1, \ldots, m\}$ for any $1 \leq i \leq n$

Definition [Minhash Signature]
The minhash signature SIG of S given h_{1}, \ldots, h_{n} is the array

$$
\left[h_{1}(S), \ldots, h_{n}(S)\right] \in\{1, \ldots, m\}^{n}
$$

Minhash Signatures

Definition [Minhash Signature]
The minhash signature SIG ${ }_{S}$ of S given h_{1}, \ldots, h_{n} is the array

$$
\left[h_{1}(S), \ldots, h_{n}(S)\right] \in\{1, \ldots, m\}^{n}
$$

Meaning: Computing the minhash signature for a column S turns

- the binary-valued array of length m that represents S

$$
\leftrightarrow S \in\{0,1\}^{m}
$$

- into an m-valued array of length n

$$
\leftrightarrow\left[h_{1}(S), \ldots, h_{n}(S)\right] \in\{1, \ldots, m\}^{n}
$$

Because $n<m$ (often $n \ll m$), the minhash signature is a reduced representation of a set.

SIGNATURE MATRIX

Consider a characteristic matrix, and n permutations h_{1}, \ldots, h_{n}.
Definition [Signature Matrix]
The signature matrix SIG is a matrix with n rows and as many columns as the characteristic matrix (i.e. the number of sets), where entries SIG $_{i j}$ are defined by

$$
\begin{equation*}
\operatorname{SIG}_{i j}=h_{i}\left(S_{j}\right) \tag{6}
\end{equation*}
$$

where S_{j} refers to the j-th column in the characteristic matrix.

Signature Matrices: Facts

Let M be a signature matrix.

- Because usually $n \ll m$, that is n is much smaller than m, a signature matrix is much smaller than the original characteristic matrix.
- The probability that SIG $_{i j_{1}}=$ SIG $_{i j_{2}}$ for two sets $S_{j_{1}}, S_{j_{2}}$ equals the Jaccard similarity $\operatorname{SIM}\left(S_{j_{1}}, S_{j_{2}}\right)$
- The expected number of rows where columns j_{1}, j_{2} agree, divided by n, is $\operatorname{SIM}\left(S_{j_{1}}, S_{j_{2}}\right)$.

Signature Matrices: Issues

Issue:

- For large m, it is time-consuming / storage-intense to determine permutations

$$
\pi:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}
$$

- Re-sorting rows relative to a permutation is even more expensive

Solution:

- Instead of permutations, use hash functions (watch the index shift!)

$$
h:\{0, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\}
$$

- Likely, a hash function is not a bijection, so at times
- places two rows in the same bucket
- leaves other buckets empty
- Effects are negligible for our purposes, however

Computing Signature Matrices in Practice

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
        end for
end for
for each row \(r\) do
    for each column \(c\) do
        if \(M(r, c)=1\) then
        for \(\mathrm{i}=1\) to n do
        \(\operatorname{SIG}(i, c)=\)
                \(\min \left(\operatorname{SIG}(i, c), h_{i}(r)\right)\)
            end for
        end if
        end for
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix SIG $\in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    for each column \(c\) do
        if \(M(r, c)=1\) then
        for \(\mathrm{i}=1\) to n do
                \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
            end for
            end if
    end for
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	∞	∞	∞	∞
h_{2}	∞	∞	∞	∞

Signature matrix SIG: after initialization

Computing Signature Matrices in Practice

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        SIG \((i, c)=\infty\)
    end for
end for
for each row \(r\) do
    for each column \(c\) do
        if \(M(r, c)=1\) then
        for \(\mathrm{i}=1\) to n do
        \(\operatorname{SIG}(i, c)=\)
                \(\min \left(\operatorname{SIG}(i, c), h_{i}(r)\right)\)
            end for
        end if
        end for
end for
```


Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 1: first row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End first row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
First iteration: row \# 0 has 1's in S_{1} and S_{4}, so put $S_{I G} G_{11}=$ SIG $_{14}=0+1 \bmod 5=1$ and SIG $_{21}=$ SIG $_{24}=3 \cdot 0+1$ $\bmod 5=1$

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	∞	∞	1
h_{2}	1	∞	∞	1

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 2: second row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                    \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End second row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
Second iteration: row \#1 has 1 in S_{3}, so put SIG $_{31}=1+1 \bmod 5=2$ and SIG $_{32}=3+1 \bmod 5=4$.

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	∞	2	1
h_{2}	1	∞	4	1

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 3: third row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                    \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End third row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
Third iteration: row \# 2 has 1's in S_{2} and S_{4}, so put SIG $_{21}=2+1$ $\bmod 5=3$, SIG $_{41}=\min (1,2+1 \bmod 5=3)=1$ and $S I G_{22}=6+1$ $\bmod 5=2$ and SIG $_{42}=\min (1,6+1 \bmod 5=2)=1$

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	1	2	4	1

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 4: fourth row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End fourth row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	0	2	0	0

Signature matrix after considering fourth row

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 5: fifth (final) row
    for each column \(c\) do
        if \(M(r, c)=1\) then
        for \(\mathrm{i}=1\) to n do
                        \(\operatorname{SIG}(i, c)=\)
                \(\min \left(\operatorname{SIG}(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End fifth (final) row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	0	1
h_{2}	0	2	0	0

Signature matrix after considering fifth row: final signature matrix

Computing Signature Matrices: Example

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	0	1
h_{2}	0	2	0	0

Signature matrix after considering fifth row: final signature matrix

- Estimates for Jaccard similarity: $\operatorname{SIM}\left(S_{1}, S_{3}\right)=\frac{1}{2}, \operatorname{SIM}\left(S_{1}, S_{4}\right)=1$
- True Jaccard similarities: $\operatorname{SIM}\left(S_{1}, S_{3}\right)=\frac{1}{3}, \operatorname{SIM}\left(S_{1}, S_{4}\right)=\frac{2}{3}$
- Estimates will be better when raising number of hash functions that is increasing number of rows of the signature matrix

Minhashing - Issues Remaining

- Minhashing is time-consuming, because iterating through all m rows of M necessary, and m is large (huge!)
- Thought experiment:
- Imagine using real permutations
- Recall: minhash is first row in permuted order with a 1
- Consider permutations $\pi:\{1, \ldots, \bar{m}\} \rightarrow\{1, \ldots, \bar{m}\}$ for $\bar{m}<m$
- Consider only examining the first \bar{m} of the permuted rows
- Speed up of a factor of $\frac{m}{\bar{m}}$
- However, all first \bar{m} rows may have 0 in some columns
- How to deal with that? Can we nevertheless work with only $\bar{m}<m$ rows and compute sufficiently accurate estimates for the Jaccard similarity of two columns?

Speeding Up Minhashing: Motivation

- Continue thought experiment
- Consider computing signature matrices by only examining $\bar{m}<m$ rows in the characteristic matrix, and using permutations $\pi:\{1, \ldots, \bar{m}\} \rightarrow\{1, \ldots, \bar{m}\}$ where
- the chosen \bar{m} rows need not be the first \bar{m} rows
- For each permutation where no 1 shows, keep ∞ as symbol in the signature matrix SIG
- Situation: Much faster to compute SIG, but $\operatorname{SIG}(i, c)=\infty$ in some places (how many? is this bad?)
- Consider computing Jaccard similarities for pairs of columns

Speeding Up Minhashing: Motivation

Situation:

- Compute Jaccard similarities for pairs of columns, while possibly
- $\operatorname{SIG}(i, c)=\infty$ for some (i, c)
- Algorithm for estimating Jaccard similarity:
- Row by row, by iterative updates,
- maintain count of rows a where columns agree
- maintain count of rows d where columns disagree
- Estimate SIM as $\frac{a}{a+d}$

Three cases:

1. Both columns do not contain ∞ in row: update counts as usual (either $a \rightarrow a+1$ or $d \rightarrow d+1$
2. Only one column has ∞ in row:

- Let two rows be c_{1}, c_{2}, and $\operatorname{SIG}\left(i, c_{1}\right)=\infty$, but $\operatorname{SIG}\left(i, c_{2}\right) \neq \infty$:
- It follows that $\operatorname{SIG}\left(i, c_{1}\right)>\operatorname{SIG}\left(i, c_{2}\right)$
- So increase count of disagreeing rows by one $(d \rightarrow d+1)$

Speeding up Minhashing: Motivation

Summary: One determines $\frac{a}{a+d}$ as estimate for $\operatorname{SIM}\left(c_{1}, c_{2}\right)$

- Counts rely on less rows than before. How reliable are they?
- However, since each permutation only refers to $\bar{m}<m$ rows, we can afford more permutations
- The one makes counts less reliable, while the other compensates for it
- Can we control the corresponding trade-off to our favour?
- What are the consequences in practice when using real hash functions and not permutations?

Speeding up Minhashing: Issues to Resolve

- Let T be the set of elements of the universal set that correspond to the initial \bar{m} rows in the characteristic matrix.
- When executing the above algorithm on only these \bar{m} rows, we determine

$$
\begin{equation*}
\frac{\left|S_{1} \cap S_{2} \cap T\right|}{\left|\left(S_{1} \cup S_{2}\right) \cap T\right|} \tag{7}
\end{equation*}
$$

as an estimate for the true Jaccard similarity $\frac{\left|S_{1} \cap S_{2}\right|}{\mid S_{1} \cup S_{2}}$.

- If T is chosen randomly, the expected value of (7) is the Jaccard similarity $\operatorname{SIM}\left(S_{1}, S_{2}\right)$
- But: there may be some disturbing variation to this estimate

Speeding up Minhashing: Strategy

Idea in practice using hash functions

- Divide m rows into $\frac{m}{\bar{m}}$ blocks of \bar{m} rows each
- For each hash function $h:\{0, \ldots, \bar{m}-1\} \rightarrow\{0, \ldots, \bar{m}-1\}$, compute minhash values for each block of \bar{m} rows
- Yields $\frac{m}{\bar{m}}$ minhash values for a single hash function, instead of just one
- Extreme: If $\frac{m}{\bar{m}}$ is large enough, only one hash function may be necessary
- Possible advantage: By using all m rows, one balances out errors in the particular estimates on only \bar{m} of the m rows:
- The overall x of the type X rows are distributed across blocks of \bar{m} rows
- Likewise, the overall y type Y rows are distributed across the blocks

Speeding up Minhashing: Example

S_{1}	S_{2}	S_{3}
0	0	0
0	0	0
0	0	1
0	1	1
1	1	1
1	1	0
1	0	0
0	0	0

Characteristic matrix for three sets $S_{1}, S_{2}, S_{3} . m=8, \bar{m}=4$.

- Truth: $\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{1}{2}, \operatorname{SIM}\left(S_{1}, S_{3}\right)=$ $\frac{1}{5}, \operatorname{SIM}\left(S_{2}, S_{3}\right)=\frac{1}{2}$
- Estimate for first four rows: $\operatorname{SIM}\left(S_{1}, S_{2}\right)=0$
- Estimate for last four rows: $\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{2}{3}$ on average across randomly picked hash functions
- Overall estimate (expected across randomly picked hash functions): $\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{1}{3}$, Ok estimate for two hash functions

Current Status: Issues Still Remaining

- Estimating similarity for each pair of sets may be infeasible even when using minhash signatures just because number of pairs is too large
- Apart from parallelism nothing can help
- Question/Idea: Can we determine candidate pairs, and only compute similarity for them, knowing similarity will be small for all others?
- Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

Summary of Current Status

From mmds.org

- Shingling: turning text files into sets Done!
- Minhashing: computing similarity for large sets Done!
- Locality Sensitive Hashing: avoids $O\left(N^{2}\right)$ comparisons by determining candidate pairs next lecture!

Materials / Outlook

- See Mining of Massive Datasets, chapter 3.1-3.3
- As usual, see http://www.mmds.org/in general for further resources
- Next lecture: "Finding Similar Items II"
- See Mining of Massive Datasets 3.4-3.6

