Finding Similar Items I

Alexander Schönhuth

Bielefeld University April 30, 2020

TODAY

Features Today

- ► Lecture will be *recorded*, edited and posted
- ► Arsnova:
 - ► Session ID: 50395809 (also pasted into Zoom chat today)
 - ► Use Case: "Questions / Comments from Audience" (German: "Kummerkasten")
 - Session will be active throughout semester
 - ► I will (be happy to) respond whenever I can

Learning Goals

- ► Turning documents into sets 🖙 shingles
- ► Computing the similarity of sets
 minhashing

Finding Similar Items: Introduction

FINDING SIMILAR ITEMS

Fundamental problem in data mining: retrieve pairs of similar elements of a dataset.

Applications

- ► Detecting plagiarism in a set of documents
- ► Identifying near-identical mirror pages during web searches
- ► Identifying documents from the same author
- ► Collaborative Filtering
 - Online Purchases (Amazon: suggestions based on 'similar' customers)
 - ► Movie Ratings (Netflix: suggestions based on 'similar' users)

6

ISSUES

Consider a dataset of N items, for example: N webpages or N text documents.

- ► Comparing all items requires $O(N^2)$ runtime.
 - ▶ Ok for small *N*.
 - ► If $N \approx 10^6$, we have 10^{12} comparisons. Maybe not OK!
- ► How to efficiently compute similarity if items themselves are large?
- ► Similarity works well for sets of items. How to turn data into sets of items?

OVERVIEW

From mmds.org

- ► *Shingling:* turning text files into sets
- ► *Minhashing:* computing similarity for large sets
- ► Locality Sensitive Hashing: avoids $O(N^2)$ comparisons by determining candidate pairs

Shingles

Turning Documents into Sets

JACCARD SIMILARITY

DEFINITION [JACCARD SIMILARITY]

Consider two sets S and T. The *Jaccard similarity* SIM(S, T) is defined as

$$SIM(S,T) = \frac{|S \cap T|}{|S \cup T|} \tag{1}$$

the ratio of elements in the intersection and in the union of *S* and *T*.

SHINGLES: DEFINITION

- ► Document = large string of characters
- ► *k-shingle:* a substring of a particular length *k*
- ► *Idea: A document is set of k-shingles*
- ► *Example*: document = "acadacc", k-shingles:

$$\{ac, ad, ca, cc, da\}$$

- We can now compute Jaccard similarity for two documents by considering them as sets of shingles.
- ► Example: documents $D_1 = "abcd"$, $D_2 = "dbcd"$ using 2-shingles yields $D_1 = \{ab, bc, cd\}$, $D_2 = \{bc, cd, db\}$, so $SIM(D_1, D_2) = \frac{|\{bc, cd\}|}{|\{ab, bc, cd, db\}|} = 2/4 = 1/2$

SHINGLES: DEFINITION

- ► Issue: Determining right size of *k*.
 - ▶ *k* large enough such that any particular *k*-shingle appears in document with low probability (*k* = 5, yielding 256⁵ different shingles on 256 different characters, ok for emails)
 - ▶ too large k yields too large universe of elements (example: k = 9 means $256^9 = (2^8)^9 = 2^{72}$ on the order of number of atoms in the universe)
- ▶ Solution if necessary *k* is too large: hash shingles to buckets, such that buckets are evenly covered, and collisions are rare
- ▶ We would like to compute Jaccard similarity for pairs of sets
- ▶ But: even when hashed, size of the universe of elements (= # buckets when hashed) may be prohibitive to do that fast
- ▶ What to do?

Minhashing

Rapidly Computing Similarity of Sets

•

SETS AS BITVECTORS

- ► Representing sets as bitvectors
 - Length of bitvectors is size of universal set
 - For example, when hashed, length of bitvector = number of buckets
 - ► Entries zero if *element not in set*, one if *element in set*
- ▶ Does not reflect to really store the sets, but nice visualization

SETS AS BITVECTORS: THE CHARACTERISTIC MATRIX

DEFINITION [CHARACTERISTIC MATRIX]

Given *C* sets over a universe *R*, the *characteristic matrix* $M \in \{0,1\}^{|R| \times |C|}$ is defined to have entries

$$M(r,c) = \begin{cases} 0 & \text{if } r \notin c \\ 1 & \text{if } r \in c \end{cases}$$
 (2)

for $r \in R, c \in C$.

Element	S_1	S_2	S_3	S_4
\overline{a}	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Characteristic matrix of four sets (S_1, S_2, S_3, S_4) over universal set $\{a, b, c, d, e\}$

PERMUTATIONS

DEFINITION [BIJECTION, PERMUTATION]

- ▶ A *bijection* is a map $\pi : S \to S$ such that
 - \blacktriangleright $\pi(x) = \pi(y)$ implies x = y (π is injective)
 - ► For all $y \in S$ there is $x \in S$ such that $\pi(x) = y$ (π is surjective)
- ► A *permutation* is a bijection

$$\pi: \{1, ..., m\} \to \{1, ..., m\}$$
 (3)

Example: A permutation on $\{1, 2, 3, 4, 5\}$ may map

$$1 \to 4, 2 \to 3, 3 \to 1, 4 \to 5 \text{ and } 5 \to 2$$

PERMUTING ROWS OF CHARACTERISTIC MATRIX

Element	S_1	S_2	S_3	S_4	Element	S_1	S_2	S_3	S_4
\overline{a}	1	0	0	1	b	0	0	1	0
b	0	0	1	0	e	0	0	1	0
c	0	1	0	1	a	1	0	0	1
d	1	0	1	1	d	1	0	1	1
e	0	0	1	0	c	0	1	0	1

A characteristic matrix of four sets (S_1, S_2, S_3, S_4) over universal set $\{a, b, c, d, e\}$ and a permutation of its rows $1 \to 3, 2 \to 1, 3 \to 5, 4 \to 4, 5 \to 2$

MINHASH - DEFINITION

Given

- ▶ a characteristic matrix with *m* rows and a column *S*
- ▶ a permutation π on the rows, that is π : $\{1,...,m\} \rightarrow \{1,...,m\}$ is a bijection

DEFINITION [MINHASH]

The *minhash* function h_{π} on S is defined by

$$h_{\pi}(S) = \min_{i \in \{1, \dots, m\}} \{\pi(i) \mid S[i] = 1\}$$

MINHASH - DEFINITION

DEFINITION [MINHASH]

The *minhash* function h_{π} on S is defined by

$$h_{\pi}(S) = \min_{i \in \{1, \dots, m\}} \{\pi(i) \mid S[i] = 1\}$$

EXPLANATION

The minhash of a column *S* relative to permutation π is

- ightharpoonup after reordering rows according to the permutation π
- ▶ the first row in which a one in *S* appears

MINHASH - EXAMPLE

EXAMPLE

Let

- ightharpoonup 1 corresponds to a, 2 to b, ...
- \blacktriangleright $\pi: 1 \rightarrow 3, 2 \rightarrow 1, 3 \rightarrow 5, 4 \rightarrow 4, 5 \rightarrow 2$ and

Element	S_1	S_2	S_3	S_4
\overline{b}	0	0	1	0
e	0	0	1	0
a	1	0	0	1
d	1	0	1	1
c	0	1	0	1

$$h_{\pi}(S_1) = 3, h_{\pi}(S_2) = 5, h_{\pi}(S_3) = 1, h_{\pi}(S_4) = 3$$

MINHASHING AND JACCARD SIMILARITY

Given

- ightharpoonup two columns (sets) S_1, S_2 of a characteristic matrix
- ightharpoonup a randomly picked permutation π on the rows (on $\{1,...,m\}$)

THEOREM [MINHASH AND JACCARD SIMILARITY]:

The probability that $h_{\pi}(S_1) = h_{\pi}(S_2)$ is SIM (S_1, S_2) .

MINHASH AND JACCARD SIMILARITY - PROOF

THEOREM [MINHASH AND JACCARD SIMILARITY]:

The probability that $h_{\pi}(S_1) = h_{\pi}(S_2)$ is SIM (S_1, S_2) .

PROOF.

Distinguish three different classes of rows:

- ► *Type X rows* have a 1 in both S_1, S_2
- ► *Type Y rows* have a 1 in only one of S_1 , S_2
- ► *Type Z rows* have a 0 in both S_1 , S_2

Let *x* be the number of type X rows and *y* the number of type Y rows.

- ► So $x = |S_1 \cap S_2|$ and $x + y = |S_1 \cup S_2|$
- ► Hence

$$SIM(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \frac{x}{x + y}$$
 (4)

MINHASH AND JACCARD SIMILARITY - PROOF

PROOF. (CONT.)

- ► Consider the *probability* that $h(S_1) = h(S_2)$
- Imagine rows to be permuted randomly, and proceed from the top
- ► The probability to encounter type X before type Y is

$$\frac{x}{x+y} \tag{5}$$

- ▶ If first non type Z row is type X, then $h(S_1) = h(S_2)$
- ▶ If first non type Z row is type Y, then $h(S_1) \neq h(S_2)$
- So $h(S_1) = h(S_2)$ happens with probability (5), which by (4) concludes the proof.

MINHASH - INTERMEDIATE SUMMARY / EXPANSION OF IDEA

- ► Computing a minhash means turning a set into one number
- ► For different sets, numbers agree with probability equal to their Jaccard similarity.
- ► Can we expand on this idea? Can we compute (ensembles of) numbers that enable us to determine their Jaccard similarity?
- ► Immediate idea: compute several minhashes. The fraction of times the minhashes of two sets agree equals their Jaccard similarity.
- Several sufficiently well chosen minhashes yield a minhash signature.

MINHASH SIGNATURES

Consider

- ▶ the *m* rows of the characteristic matrix
- ▶ *n* permutations $\{1,...,m\} \rightarrow \{1,...,m\}$
- ► the corresponding *minhash* functions $h_1,...,h_n: \{0,1\}^m \to \{1,...,m\}$
- ▶ and a particular column $S \in \{0, 1\}^m$ $\Rightarrow h_i(S) \in \{1, ..., m\}$ for any $1 \le i \le n$

DEFINITION [MINHASH SIGNATURE]

The minhash signature SIG_S of S given $h_1, ..., h_n$ is the array

$$[h_1(S),...,h_n(S)] \in \{1,...,m\}^n$$

MINHASH SIGNATURES

DEFINITION [MINHASH SIGNATURE]

The *minhash signature* SIG_S of S given $h_1, ..., h_n$ is the array

$$[h_1(S),...,h_n(S)] \in \{1,...,m\}^n$$

Meaning: Computing the minhash signature for a column *S* turns

- ▶ the binary-valued array of length m that represents S $\leftrightarrow S \in \{0,1\}^m$
- ▶ into an *m*-valued array of length $n \leftrightarrow [h_1(S), ..., h_n(S)] \in \{1, ..., m\}^n$

Because n < m (often n << m), the minhash signature is a *reduced* representation of a set.

SIGNATURE MATRIX

Consider a characteristic matrix, and n permutations $h_1, ..., h_n$.

DEFINITION [SIGNATURE MATRIX]

The signature matrix SIG is a matrix with n rows and as many columns as the characteristic matrix (i.e. the number of sets), where entries SIG_{ij} are defined by

$$SIG_{ij} = h_i(S_j) (6)$$

where S_j refers to the j-th column in the characteristic matrix.

SIGNATURE MATRICES: FACTS

Let *M* be a signature matrix.

- ▶ Because usually n << m, that is n is much smaller than m, a signature matrix is much smaller than the original characteristic matrix.
- ► The probability that $SIG_{ij_1} = SIG_{ij_2}$ for two sets S_{j_1}, S_{j_2} equals the Jaccard similarity $SIM(S_{j_1}, S_{j_2})$
- ▶ The expected number of rows where columns j_1 , j_2 agree, divided by n, is $SIM(S_{j_1}, S_{j_2})$.

SIGNATURE MATRICES: ISSUES

Issue:

► For large *m*, it is time-consuming / storage-intense to determine permutations

$$\pi: \{1, ..., m\} \to \{1, ..., m\}$$

Re-sorting rows relative to a permutation is even more expensive

Solution:

► Instead of permutations, use hash functions (watch the index shift!)

$$h: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}$$

- Likely, a hash function is not a bijection, so at times
 - ▶ places two rows in the same bucket
 - leaves other buckets empty
- Effects are negligible for our purposes, however

6

COMPUTING SIGNATURE MATRICES IN PRACTICE

- ► Consider *n* hash functions $h_i : \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- ► Let r and c index rows and columns in the characteristic matrix $M \in \{0,1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 \le i \le n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
   for each column c do
     if M(r,c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i,c),h_i(r))
        end for
     end if
  end for
end for
```


COMPUTING SIGNATURE MATRICES: EXAMPLE

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from $0\ \mathrm{to}\ 4$

COMPUTING SIGNATURE MATRICES IN PRACTICE

- ► Consider *n* hash functions $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- ► Let r and c index rows and columns in the characteristic matrix $M \in \{0,1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 \le i \le n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
   for each column c do
     if M(r,c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i,c),h_i(r))
        end for
     end if
  end for
end for
```


COMPUTING SIGNATURE MATRICES: EXAMPLE

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from $0\ \mathrm{to}\ 4$

	S_1	S_2	S_3	S_4
h_1	∞	∞	∞	∞
h_2	∞	∞	∞	∞

Signature matrix SIG: after initialization

COMPUTING SIGNATURE MATRICES IN PRACTICE

- ► Consider *n* hash functions $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- ► Let r and c index rows and columns in the characteristic matrix $M \in \{0,1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 \le i \le n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
  for each column c do
     if M(r,c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i,c),h_i(r))
        end for
     end if
  end for
end for
```


COMPUTING SIGNATURE MATRICES IN PRACTICE

- ► Consider *n* hash functions $h_i : \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- ► Let r and c index rows and columns in the characteristic matrix $M \in \{0,1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
  // Iteration 1: first row
  for each column c do
     if M(r,c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i,c),h_i(r))
        end for
     end if
  end for
  // End first row
end for
```


COMPUTING SIGNATURE MATRICES: EXAMPLE

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4 $\,$

First iteration: row # 0 has 1's in S_1 and S_4 , so put $SIG_{11} = SIG_{14} = 0 + 1 \mod 5 = 1$ and $SIG_{21} = SIG_{24} = 3 \cdot 0 + 1 \mod 5 = 1$

	S_1	S_2	S_3	S_4
h_1	1	∞	∞	1
h_2	1	∞	∞	1

COMPUTING SIGNATURE MATRICES IN PRACTICE

- ► Consider *n* hash functions $h_i: \{0, ..., m-1\} \to \{0, ..., m-1\}, i = 1, ..., n$
- ► Let r and c index rows and columns in the characteristic matrix $M \in \{0,1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
  // Iteration 2: second row
  for each column c do
     if M(r,c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i,c),h_i(r))
        end for
     end if
  end for
  // End second row
end for
```


COMPUTING SIGNATURE MATRICES: EXAMPLE

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from $0\ \mbox{to}\ 4$

Second iteration: row #1 has 1 in S_3 , so put $SIG_{31} = 1 + 1 \mod 5 = 2$ and $SIG_{32} = 3 + 1 \mod 5 = 4$.

	S_1	S_2	S_3	S_4
h_1	1	∞	2	1
h_2	1	∞	4	1

COMPUTING SIGNATURE MATRICES IN PRACTICE

- ► Consider *n* hash functions $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- ► Let r and c index rows and columns in the characteristic matrix $M \in \{0,1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
  // Iteration 3: third row
  for each column c do
     if M(r,c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i,c),h_i(r))
        end for
     end if
  end for
  // End third row
end for
```


Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Third iteration: row # 2 has 1's in S_2 and S_4 , so put $SIG_{21} = 2 + 1 \mod 5 = 3$, $SIG_{41} = \min(1, 2 + 1 \mod 5 = 3) = 1$ and $SIG_{22} = 6 + 1 \mod 5 = 2$ and $SIG_{42} = \min(1, 6 + 1 \mod 5 = 2) = 1$

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	1	2	4	1

COMPUTING SIGNATURE MATRICES IN PRACTICE

- ► Consider *n* hash functions $h_i: \{0, ..., m-1\} \to \{0, ..., m-1\}, i = 1, ..., n$
- ► Let r and c index rows and columns in the characteristic matrix $M \in \{0,1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
  // Iteration 4: fourth row
  for each column c do
     if M(r,c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i,c),h_i(r))
        end for
     end if
  end for
  // End fourth row
end for
```


Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from $0\ \mathrm{to}\ 4$

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	0	2	0	0

Signature matrix after considering fourth row

COMPUTING SIGNATURE MATRICES IN PRACTICE

- ► Consider *n* hash functions $h_i: \{0, ..., m-1\} \to \{0, ..., m-1\}, i = 1, ..., n$
- Let r and c index rows and columns in the characteristic matrix $M \in \{0, 1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
   // Iteration 5: fifth (final) row
   for each column c do
     if M(r,c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i,c),h_i(r))
        end for
     end if
  end for
   // End fifth (final) row
end for
```


Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

	S_1	S_2	S_3	S_4
h_1	1	3	0	1
h_2	0	2	0	0

Signature matrix after considering fifth row: final signature matrix

	S_1	S_2	S_3	S_4
h_1	1	3	0	1
h_2	0	2	0	0

Signature matrix after considering fifth row: final signature matrix

- ► *Estimates* for Jaccard similarity: $SIM(S_1, S_3) = \frac{1}{2}, SIM(S_1, S_4) = 1$
- ► *True* Jaccard similarities: $SIM(S_1, S_3) = \frac{1}{3}, SIM(S_1, S_4) = \frac{2}{3}$
- ► Estimates will be better when raising number of hash functions that is increasing number of rows of the signature matrix

6

MINHASHING - ISSUES REMAINING

- ▶ Minhashing is time-consuming, because iterating through all *m* rows of *M* necessary, and *m* is large (huge!)
- ► *Thought experiment:*
 - ► Imagine using real permutations
 - ► Recall: minhash is first row in permuted order with a 1
 - Consider permutations $\pi : \{1, ..., \bar{m}\} \rightarrow \{1, ..., \bar{m}\}$ for $\bar{m} < m$
 - ► Consider only examining the first \bar{m} of the permuted rows
 - ► Speed up of a factor of $\frac{m}{\bar{m}}$
 - ► However, all first \bar{m} rows may have 0 in some columns
- ► How to deal with that? Can we nevertheless work with only $\bar{m} < m$ rows and compute sufficiently accurate estimates for the Jaccard similarity of two columns?

SPEEDING UP MINHASHING: MOTIVATION

- ► Continue thought experiment
- ► Consider computing signature matrices by only examining $\bar{m} < m$ rows in the characteristic matrix, and using permutations $\pi : \{1, ..., \bar{m}\} \rightarrow \{1, ..., \bar{m}\}$ where
- \blacktriangleright the chosen \bar{m} rows need not be the first \bar{m} rows
- ► For each permutation where no 1 shows, keep ∞ as symbol in the signature matrix *SIG*
- ► *Situation:* Much faster to compute *SIG*, but $SIG(i,c) = \infty$ in some places (how many? is this bad?)
- ► Consider computing Jaccard similarities for pairs of columns

SPEEDING UP MINHASHING: MOTIVATION

Situation:

- Compute Jaccard similarities for pairs of columns, while possibly
- ► $SIG(i, c) = \infty$ for some (i, c)
- ► *Algorithm for estimating Jaccard similarity:*
 - ► Row by row, by iterative updates,
 - ▶ maintain count of rows *a* where columns agree
 - ► maintain count of rows *d* where columns disagree
 - Estimate SIM as $\frac{a}{a+d}$

Three cases:

- 1. Both columns do not contain ∞ in row: update counts as usual (either $a \rightarrow a+1$ or $d \rightarrow d+1$
- 2. Only one column has ∞ in row:
 - Let two rows be c_1, c_2 , and $SIG(i, c_1) = \infty$, but $SIG(i, c_2) \neq \infty$:
 - ▶ It follows that $SIG(i, c_1) > SIG(i, c_2)$
 - ► So increase count of disagreeing rows by one $(d \rightarrow d + 1)$
- UNIVERSITÄ Both columns have ∞ in a row: unclear situation, skip updating counts

SPEEDING UP MINHASHING: MOTIVATION

Summary: One determines $\frac{a}{a+d}$ as estimate for $SIM(c_1, c_2)$

- ► Counts rely on less rows than before. How reliable are they?
- ► However, since each permutation only refers to $\bar{m} < m$ rows, we can afford more permutations
- ► The one makes counts less reliable, while the other compensates for it
- ► Can we control the corresponding trade-off to our favour?
- ► What are the consequences in practice when using real hash functions and not permutations?

Speeding up Minhashing: Issues to Resolve

- Let *T* be the set of elements of the universal set that correspond to the initial \bar{m} rows in the characteristic matrix.
- ▶ When executing the above algorithm on only these \bar{m} rows, we determine

$$\frac{|S_1 \cap S_2 \cap T|}{|(S_1 \cup S_2) \cap T|} \tag{7}$$

as an estimate for the true Jaccard similarity $\frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$.

- ► If *T* is chosen randomly, the expected value of (7) is the Jaccard similarity $SIM(S_1, S_2)$
- ▶ But: there may be some disturbing variation to this estimate

SPEEDING UP MINHASHING: STRATEGY

Idea in practice using hash functions

- ▶ Divide *m* rows into $\frac{m}{\bar{m}}$ blocks of \bar{m} rows each
- ▶ For each hash function $h: \{0,..., \bar{m}-1\} \rightarrow \{0,..., \bar{m}-1\}$, compute minhash values for each block of \bar{m} rows
- ▶ Yields $\frac{m}{m}$ minhash values for a single hash function, instead of just one
- ► *Extreme*: If $\frac{m}{\bar{m}}$ is large enough, only one hash function may be necessary
- ▶ *Possible advantage:* By using all m rows, one balances out errors in the particular estimates on only \bar{m} of the m rows:
 - ▶ The overall x of the type X rows are distributed across blocks of \bar{m} rows
 - Likewise, the overall y type Y rows are distributed across the blocks

SPEEDING UP MINHASHING: EXAMPLE

S_1	S_2	S_3
0	0	0
0	0	0
0	0	1
0	1	1
1	1	1
1	1	0
1	0	0
0	0	0

Characteristic matrix for three sets S_1 , S_2 , S_3 . m = 8, $\bar{m} = 4$.

- ► Truth: $SIM(S_1, S_2) = \frac{1}{2}$, $SIM(S_1, S_3) = \frac{1}{5}$, $SIM(S_2, S_3) = \frac{1}{2}$
- ► Estimate for first four rows: $SIM(S_1, S_2) = 0$
- ► Estimate for last four rows: $SIM(S_1, S_2) = \frac{2}{3}$ on average across randomly picked hash functions
- ► Overall estimate (expected across randomly picked hash functions): $SIM(S_1, S_2) = \frac{1}{3}$, Ok estimate for two hash functions

CURRENT STATUS: ISSUES STILL REMAINING

- ► Estimating similarity for each pair of sets may be infeasible even when using minhash signatures just because number of pairs is too large
- ► Apart from parallelism nothing can help
- Question/Idea: Can we determine candidate pairs, and only compute similarity for them, knowing similarity will be small for all others?
- ► Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

SUMMARY OF CURRENT STATUS

From mmds.org

- ► *Shingling:* turning text files into sets 🖾 Done!
- ► *Minhashing*: computing similarity for large sets 🖾 Done!
- ► Locality Sensitive Hashing: avoids $O(N^2)$ comparisons by determining candidate pairs \square next lecture!

6

MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*, chapter 3.1–3.3
- ► As usual, see http://www.mmds.org/in general for further resources
- ► Next lecture: "Finding Similar Items II"
 - ► See *Mining of Massive Datasets* 3.4–3.6

