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Introduction to Generative Modelling
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Sources

Unless stated otherwise, all content of the introduction is based on:

Dive into Deep Learning, chapter 17 (Zhang et al.)

NIPS 2016 Tutorial on GANs (Ian Goodfellow)

Stanford Lecture CS231n, Lecture 13, 2017
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Common Tasks in Machine Learning
Supervised learning

Classification

Regression

Object detection

-> learn function f (x) = y that maps
label y to data x

Unsupervised learning

Clustering

Dimensionality reduction

Density estimation

-> learn underlying structure of data

The goal is usually to create a model of
the data and extract some information.
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Common tasks in Machine Learning

ML in introductory lectures:

Data Information

Data Model Information

Generative models:

Data New Data

Data Model New Data
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Generative Modelling

Goal:

Given some training data, generate new data from same distribution.

Not particularly hard for simple datasets.
But what about more complex data?
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Generating Images

Real dataset new generated samples

Requires very complex, nonlinear algorithms (e.g. deep neural networks)

Huge amounts of data needed

-> Unsupervised approaches necessary ("cheap data")
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Taxonomy of Generative Modelling
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Fully Visible Belief Nets

Explicit density model:

Likelihood of picture x is product of probabilities of pixel values xi , given
all previously drawn pixels.

p(x) =
n∏

i=1

p(xi |x1, ..., xi−1)

p(xi |x1, ..., xi−1) is expressed through neural network (e.g. RNN or CNN).

Find weights by maximising likelihood of training data

GANs - Generative Adversarial Networks Florian Nolte, Jan-Hendrik Deke, Alexander Symanski Deep Learning Folie 10



PixelRNN

Start in top left corner

Neighbours depend on already
drawn pixels

Dependency modelled through a
recurrent neural network

Major disadvantage: very slow
(generation and training)
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PixelCNN

Replace RNN with convolutional
neural network

Start in top left corner

Draw next pixels based on context
region

Faster than PixelRNN, but still slow
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Results

PixelCNN elephants
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Taxonomy of Generative Modelling
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Autoencoders

Unsupervised approach for dimensionality reduction and low dimensional
feature representation

Encoder: Neural network
compresses data x to feature
space z

Decoder: Reconstructs data from
features z

Minimise difference ||x − x̂ ||2

Normally: decoder is thrown away
afterwards

If data can be reconstructed:
z is good representation of data
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Variational Autoencoder

Idea: Don’t throw away the decoder.
Use it to generate new, unseen data!

If we can put in some random features z, we might get out sensible new
data!

Solution: Construct special probabilistic Autoencoder where we can
calculate the distribution of the features z

Put in some values for z that follow this distribution.
-> Out comes a new image!
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Variational Autoencoders: Results

Faces are a little bit blurry
and not very high quality
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Variational Autoencoders: Results

Dimensions of z correspond to
features in the data
(here: head pose, degree of smile)

Very useful when trying to generate
specific pictures!
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Taxonomy of Generative Modelling
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Motivation and Intuition Behind GANs
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GANs - Motivation

We don’t care to model these complex distributions!

Goal: Simply produce nice samples

Problem: We can’t easily sample from the data distribution
(or any complex distribution!)

Solution: Sample from a very simple distribution (random noise) and
transform it to look like the target distribution!

Input noise Noise after transformation
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GANs - Motivation

How to model such a complex, nonlinear transformation?
-> Deep Neural Networks

Generator: Neural network that transforms random noise into sample
from data distribution.

How do we know whether the transformation is good?
What is the loss function?

Without this, we cannot train the generator!
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GANs - Ideas for Loss Functions
Likelihood:
We do not model the likelihood -> cannot be optimised!  

Loss = ||x̂ − xi ||2
We do not want to reproduce the dataset (i.e. overfit)  

Loss = ||x̂ − x ||2
We do not want to produce an "average", blurry sample!  

Next video frame prediction - MSE solution is blurry The average human face
- not a very good sample!
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The Adversary

The GAN solution to the loss-function: Game Theory!

Discriminator: Adversarial neural network (opponent) that judges the
performance of the generator.

Normal classifier that predicts if an image is real or "fake"

Output from the discriminator is used as a loss for the generator

The two networks "play against each other"

Common analogy: Police vs counterfeiters
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GANs VS MSE

GAN sample: sharp edges, looks realistic

MSE solution would not be accepted by the discriminator (no person in the
dataset is blurry!)

There is not one best output for the generator
-> multiple solutions can be accepted by discriminator

GANs - Generative Adversarial Networks Florian Nolte, Jan-Hendrik Deke, Alexander Symanski Deep Learning Folie 25



Police VS Counterfeiters

Counterfeiters: Try to produce real looking money

Police: tries to identify the fake money

Over time, both get better at their tasks

Police is really good at identifying fake money, but the counterfeiters still
manage to fool them?
=> Counterfeiters must have produced really good looking money!

Counterfeiters = Generator

Police = Discriminator
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GAN - Overview

Generator: Gets better at fooling the
discriminator

Discriminator: Gets better at classifying
data

In the end: Fake samples might be
indistinguishable from the real data!

Only the discriminator sees the data!

Generator can only improve based on the
discriminators feedback
-> Generator does not simply recreate
dataset
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Formalization of GANs
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Sources

Unless stated otherwise, all content of the formalization is based on:

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural
information processing systems. 2014.

NIPS 2016 Tutorial on GANs (Ian Goodfellow)

https://srome.github.io/
An-Annotated-Proof-of-Generative-Adversarial-Networks\
-with-Implementation-Notes/

https://seas.ucla.edu/~kao/nndl/lectures/gans.pdf
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A Perfect Generator - Mathematically

Goal: Generate data that is indistinguishable from real data

• Mathematically: Two Random Variables need to be equal in distribution

Equal Probability Density Functions: pG(x) = pdata(x)

Strategy: Let G play a game against D in order to learn!

• Understand goals and strategies of your opponent

• Based on the strategy of your opponent, devise your own!
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The Discriminator’s Goal - Part I

maxEx∼pdata(x) [logD(x)]︸ ︷︷ ︸
Classify real

samples as real

D(x) ≈ 1 means D classifies data as real

D(x) ≈ 0 means D classifies data as fake

Therefore, D′s goal is to maximise this expectation

GANs - Generative Adversarial Networks Florian Nolte, Jan-Hendrik Deke, Alexander Symanski Deep Learning Folie 31



The Discriminator’s Goal - Part II

maxEz∼pz (z)[log(1− D(G(z))︸ ︷︷ ︸
Classify fake

samples as fake

)]

D(G(z)) ≈ 1 means D classifies data coming from G as real

D(G(z)) ≈ 0 means D classifies data coming from G as fake

Therefore, D′s goal is to maximise this expectation
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The Discriminator’s Goals Combined

maxV (D,G) := Ex∼pdata(x)[logD(x)]︸ ︷︷ ︸
Classify real

as real

+ Ez∼pz (z)[log(1− D(G(z))︸ ︷︷ ︸
Classify fake

as fake

)]

The Value Function may remind you of the cross-entropy loss as used in
logistic regression

What will the be the counter strategy of the Generator?
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The Generator’s Counter Strategy

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G(z))︸ ︷︷ ︸
Classify fake

as real

)]

G wants to minimise what D has maximised: minG V (D∗,G)

G and D are thus playing a minimax game
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Proof Structure

To Show:
pG = pdata

Find Optimal
D∗G =

pdata

pdata + pG

Show

pG = pdata ⇐⇒ minV (G,D∗) = − log(4)

V (G,D∗) = − log(4) + KL (...)︸ ︷︷ ︸
KL≥0

+ KL (...)︸ ︷︷ ︸
≥0

V (G,D∗) = − log(4) + 2 · JSD (pdata|pG)︸ ︷︷ ︸
Jenson Shannon Divergence = 0

⇐⇒ pG=pd
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Pseudo Code: Iterative Training of D and G
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Cost Functions for G

Non-Saturating Cost Gradient: 1
(D(G(z))

Saturating Cost Gradient: − 1
1−(D(G(z))
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Illustration of Training Procedure - A Distribution Perspective

Iterative Improvement of Generated Probability Distirbution

Discriminator improves from (a) to (b)

Generator improves from (b) to (c)

Generator perfectly mimics the true data and the discriminator assigns
probability 1

2 everywhere in (d)
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Illustration of Training Procedure - A Function Landscape Perspective

Function Landscape of a Minimax Game

The red dot is the equilibrium in this minimax game and can be reached with
the algorithm
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Experiments
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Sources

Unless stated otherwise, all content of the experiments is based on:

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural
information processing systems. 2014.
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GANs Can Recover the MNIST Dataset

MNIST Samples with most similar training sample
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GANs Recover More Complex Distributions

TFD Samples with most similar training sample
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Performance of GANs: Quantified and Compared

Model MNIST TFD
DBN 138± 2 1909± 66

Stacked CAE 121± 1.6 2110± 50
Deep GSN 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table: Log-Likelihood Estimates

GANs: Almighty!?
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Almighty? No!

CIFAR-10 Samples with most similar Training Sample
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Easy-to-Use? No!

Input Data after 2h

"There are so many other problems with GANs that in academia (at least
in Harvard), there is a running joke that if you want to train a GAN, you pick
an unsuspecting and naive graduate student to do it for you[...]." (Matthew
Stewart on towardsdatascience.com)
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Advantages and Disadvantages
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Advantages
Only backpropagation is used to obtain gradients
No Markov chains
No inference
Components of the input are not copied directly into the generator’s
parameters.
’Calculation’ with images
Not only for pictures

• Sound-Example

Source
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https://magenta.tensorflow.org/gansynth
https://arxiv.org/abs/1611.02163


Disadvantages
No explicit representation of generator distribution pG
Hard to train

• The discriminator and the generator must be ’balanced’
• Non-Convergence

• min
B

max
A

V (D,G) = xy

• ∆x = α
δ(xy)
δ(x) , ∆y = −α δ(xy)

δ(y)

Source
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https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b


Bad Balancing - Mode Collapse

Source

GANs - Generative Adversarial Networks Florian Nolte, Jan-Hendrik Deke, Alexander Symanski Deep Learning Folie 50

https://arxiv.org/abs/1611.02163


Bad Balancing - Mode Collapse

Source

GANs - Generative Adversarial Networks Florian Nolte, Jan-Hendrik Deke, Alexander Symanski Deep Learning Folie 51

https://arxiv.org/abs/1611.02163


Bad Balancing - Vanishing Gradients
Discriminator will get too strong
Generator never knows success
Generator will produce bad images

Source
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https://harvard-iacs.github.io/2019-CS109B/a-sections/a-section8/presentation/cs109b_asec8_slides_gan.pdf


State of the Art Frameworks and Examples
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WGANs

Wasserstein GAN

New loss function using Wasserstein-1 distance
W (Pr ,Pg) = inf

γ∈
∏

(Pr ,Pg )
E(x,y)∼γ [ ||x − y || ]

Improve the stability of learning

Get rid of problems like mode collapse and and vanishing gradients

Provide meaningful learning curves useful for debugging
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WGANs

Source
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https://arxiv.org/abs/1701.07875


DCGANs

Deep Convolutional GAN

Apply the architecture of CNNs on GAN

Higher stability of learning
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DCGANs

Source
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https://arxiv.org/abs/1511.06434


SAGANs

Self-Attention GAN

Build on top of the DCGANs
Use a Self-Attention-Mechanism

• To model long range dependencies across the image

Good for structures and geometry
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SAGANs

Source
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https://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf


SAGANs

Source
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https://arxiv.org/abs/1805.08318


SAGANs

Source
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https://arxiv.org/abs/1805.08318


BigGANs

Original GANs: image resolution up to 64x64 or 128x128
Scale up the GAN with some design choices, techniques and tricks:

• Use SAGANs
• Update discriminator more than generator
• Truncation trick
• More model parameters
• Orthogonal regularization

Result: Images with resolution of 256x256 and higher
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BigGANs

Source
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https://arxiv.org/abs/1406.2661


BigGANs

Source
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https://arxiv.org/abs/1809.11096


Growing GANs

Changes it’s structure while training
Training contains multiple steps:

• Reduce the original training data to 4x4
• Train the GAN until a certain stability is reached
• Add a new, bigger layer to the GAN
• Reduce the original training data to 8x8
• Repeat until original training data resolution is reached

Training will take a while

Much more data is seen
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Growing GANs

Source
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https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2


Growing GANs

Source
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Growing GANs

miro.medium.com/max/586/1*luI7A7HmZpqPUjX04mGavA.gif

thispersondoesnotexist.com/
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More GANs

DCGAN

WGAN

CGAN

LAPGAN

SRGAN

CycleGAN

WGAN-GP

EBGAN

VAE-GAN

BiGAN

SGAN

SimGAN

VGAN

iGAN

3D-GAN

CoGAN

Cat-GAN

MGAN

S∧2GAN

LSGAN

AffGAN

TP-GAN

IcGAN

ID-CGAN

AnoGAN

LS-GAN

Triple-GAN

TGAN

BS-GAN

MalGAN

RTTGAN

GANCS

SSL-GAN

MAD-GAN

PrGAN

AL-CGAN

ORGAN

SD-GAN

MedGAN

SGAN

SL-GAN

SketchGAN

GoGAN

RWGAN

MPM-GAN

MV-GAN

StyleGAN

GANSynth

ProGAN

Context-RNN-GAN
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Discussion
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Discussion

In a few years: everyone might be able to produce photo realistic images from
their home computer!

This is great for:

Artists

Filmmakers

And all other creative industries!

Sounds fantastic!
Where is the drawback?

Van Gogh by Reddit user basu68
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Deepfakes

GANs or Autoencoders that can recreate faces of specific people

Input Dataset: Videos and photos of target person

Output: Realistic video of target person, based on reference movement.

Trump deepfake: https://www.youtube.com/watch?v=hoc2RISoLWU
The Shining deepfake: https://www.youtube.com/watch?v=AeRofGJ17Sk
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Deepfakes

These generated images can (and have been) used for:

Fake political videos

Pornographic videos of celebreties

Pornographic videos of random people from the internet!

If deepfakes get too good, we cannot trust any video to be real anymore!

And on the flipside: e.g. politicians could pretend that real videos are deepfakes
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Questions to Discuss

General:

Are there other kinds of data you would be interested in generating?

Deepfakes:

What other problems are there with people being able to generate realistic
fake images and video?

Will GANs or other techniques ever even produce perfect pictures?

How can we fight / prevent deepfakes?
Through machine learning? Laws?
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