#### Biological Applications of Deep Learning Lecture 10

Alexander Schönhuth



Bielefeld University December 14, 2022

#### CONTENTS TODAY

- ► ALSNet
  - Predicting ALS disease status from genotype profiles
  - Employ convolution on sequences directly
- Capsule Networks: Tutorial
  - Motivation
  - Methodology
  - ► Effects



#### **Reminder:** ALS-Net

Reference

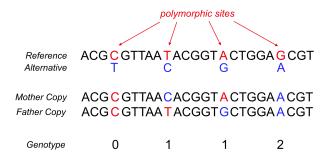
 B. Yin, M. Balvert, R. van de Spek, B. Dutilh, S. Bohte, J. Veldink, A. Schönhuth Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype Bioinformatics, 2019



Genetic Architecture: A Formal Description



#### INDIVIDUAL GENOTYPES



#### Represent individuals by their genotypes

Vectors whose length is number of polymorphic sites, with entries

- 0 = homozygous for reference
- 1 = heterozygous
- 2 = homozygous for alternative



# THE GENETIC ARCHITECTURE OF ALS DEFINITION

Let  $\mathcal{X}$  be all people, represented by their genotypes.

The *genetic architecture*  $f_{ALS}$  of ALS is a function

$$f_{\mathrm{ALS}}: \mathcal{X} \longrightarrow \{0, 1\}$$

where for  $X \in \mathcal{X}$ 

$$f(X) = \begin{cases} 1 & X \text{ affected by ALS} \\ 0 & \text{otherwise} \end{cases}$$



#### Machine Learning the Genetic Architecture



#### LEARNING THE GENETIC ARCHITECTURE

Let  $\mathcal{M}$  is a class of ML compatible functions:

Approximate  $f_{ALS}$  by  $f_{ALS}^* \in \mathcal{M}$ 

using known examples

• cases:  $(x, f_{ALS}(x) = 1)$ 

• controls:  $(x, f_{ALS}(x) = 0)$ 

as training/validation data

• Goodness of  $f_{ALS}^*(x)$  is evaluated on previously unseen *test data* 

Linear approximations *f*<sup>\*</sup><sub>ALS</sub> work poorly
 This explains the large amount of missing heritability



#### CHALLENGES

- ► *Input size*: Length of genotype string N
  - N several millions
  - Dimensionality of problem too large, too many parameters to be learnt
- Convolving genotype vectors? Use of convolution tailored towards image analysis



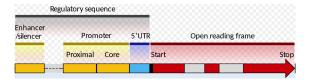
Feature Selection

Picking relevant variant sites from 5 million sites overall



## FEATURE SELECTION I: REGULATORY REGIONS

GENETICS PRINCIPLE GUIDED FEATURE SELECTION



Regulatory Region Gene

- Regulatory regions responsible for controlling gene activation status
- Majority of disease-associated variants sit in regulatory regions [Maurano et al, Science, 2012]
- Consider only 64 variants from each of these ( $\approx 20000$ ) regions
- ► *But:* still more than 1 million sites remaining



## PROMOTER-CNN

ARCHITECTURE

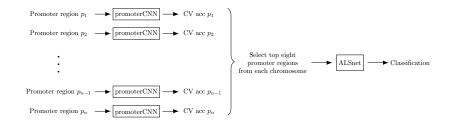
| Layer type              | Description          | Output shape |
|-------------------------|----------------------|--------------|
| Input                   |                      | (64, 1)      |
| Convolution, BN and Act | $1 \times 1$ filter, | (64, 4)      |
|                         | 4 output channels    |              |
| Convolution, BN and Act | $4 \times 4$ filter, | (61, 32)     |
|                         | 32 output channels   |              |
| Reshape                 | Flatten              | (1952, 1)    |
| Dense, BN and Act       |                      | (148, 1)     |
| Dense, BN and Act       |                      | (16, 1)      |
| Output                  | Softmax              | (2,1)        |

• *Input*: Genotypes from promoter region  $\leftrightarrow$  element of  $\{0, 1, 2\}^{64}$ 

► Output: 0 for 'No ALS', 1 for 'ALS'



# FEATURE SELECTION II: PROMOTER CNN WORKFLOW



- Second Step: Evaluate promoter variant blocks using (5-layered) 'Promoter-CNN' for being predictive of ALS
  - Keep only 8 highest-scoring regions per chromosome; discard all others
  - Remaining sites: 512 per chromosome reader Perfect!



#### FEATURE SELECTION PROTOCOL: ADVANTAGES

- Applying convolution sensible: By laws of recombination, variants within promoter region inherited as haplotype block
- ► Interpretability: Reveal potentially relevant ALS genes

#### Feature selection addresses three key technical challenges

Left To Do

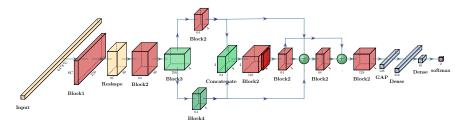
Construct deep CNN



#### Classification: ALS-Net



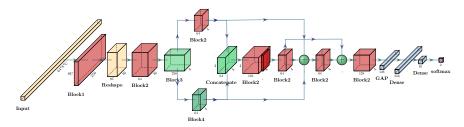
#### **ALS-NET:** ARCHITECTURE



Depth: 24 hidden layers overall

- ▶ Block 1: 2 x conv. + batch norm. (BN), Block 2: 3 x conv.
- ► *Reshape*: [Howard et al., 2017]: yields 16 × 16 × 32 S convolution
- Block 3: 1 x separable convolution [Gao et al., 2018]
  saves on parameters, 1 x conv., 2 x pooling
- ► *Block* 4: 2 x conv. + 1 x separable conv.
- ▶ Blue Arrows: Bypass layers if needed, see [ResNet, 2015]
- ► *GAP*: Global average pooling
- BIELEFELD Dense: Fully connected layer

#### **ALS-NET:** ARCHITECTURE

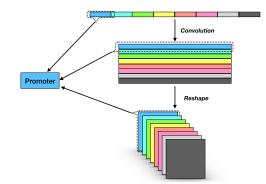


Depth: 24 hidden layers overall

- ▶ Block 1: 2 x conv. + batch norm. (BN), Block 2: 3 x conv.
- ▶ *Reshape*: [Howard et al., 2017]: yields 16 × 16 × 32 III convolution
- Block 3: 1 x sep. conv. [Gao et al., 2018]
  saves on parameters, 1 x conv., 2 x pooling
- ► *Block* 4: 2 x conv. + 1 x separable conv.
- ▶ Blue Arrows: Bypass layers if needed, see [ResNet, 2015]
- ► *GAP*: Global average pooling
- UNIVERSITÄ BIELEFELD Dense: Fully connected layer

## ALS-NET

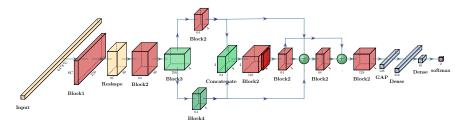
#### RESHAPE FOR ONE CHROMOSOME



*Interpretation*: Each promoter makes a channel: "8x8-image" for each participating chromosome



#### **ALS-NET:** ARCHITECTURE



#### Depth: 24 hidden layers overall

- ▶ Block 1: 2 x conv. + batch norm. (BN), Block 2: 3 x conv.
- ► *Reshape*: [Howard et al., 2017]: yields 16 × 16 × 32 S convolution
- Block 3: 1 x sep. conv. [Gao et al., 2018]
  saves on parameters, 1 x conv., 2 x pooling
- ► *Block* 4: 2 x conv. + 1 x separable conv.
- Blue Arrows: Bypass layers if needed, see [ResNet, 2015]
- ► GAP: Global average pooling
- BIELEFELD Dense: Fully connected layer

### Chromosomes 7, 9, 17 and 22

|                         | Accuracy | Precision | Recall |
|-------------------------|----------|-----------|--------|
| Logistic Regression     | 73.9     | 75.9      | 69.9   |
| Support Vector Machines | 72.5     | 78.3      | 62.4   |
| Random Forest           | 59.6     | 81.3      | 24.9   |
| Ada-Boost               | 66.1     | 70.0      | 56.5   |
| ALS-Net                 | 76.9     | 71.1      | 90.8   |

- Recall: ALS-Net recovers substantially more cases
- Choice of chromosomes favors additive approaches [Van Rheenen et al., Nat.Gen., 2016]
- ► All methods required (here: CNN-based) feature selection: without feature selection no method runs on all 4 chromosomes
- Important finding: ALS-Net picks up less confounding variables (batch effects) than Logistic Regression

UNIVERSITÄ BIELEFELD

#### Capsule Networks



#### Motivation: Pooling in CNN's



## CONVOLUTIONAL NEURAL NETWORKS

POOLING LAYERS

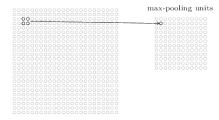
- In addition to convolutional layers, CNN's make use of pooling layers.
- Pooling layers generate *condensed feature maps*: it takes a rectangle of neurons, and summarizes their values into one value
- This generates a considerably smaller layer



## CONVOLUTIONAL NEURAL NETWORKS

#### POOLING LAYERS

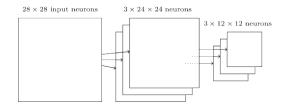
hidden neurons (output from feature map)



 $2 \times 2$  pooling

- Max pooling: Each L × L rectangle is mapped onto the maximum of its values
- ► *L2 pooling*: Each *L* × *L* rectangle is mapped to the rooted average of the squares of the values
- This overall yields a layer that is  $L \times L$  times smaller
- UNIVERSITÄUsually L = 2 is used

#### CONVOLUTIONAL NEURAL NETWORKS Combining Convolutional and Pooling Layers



Convolutional layer followed by pooling layer

- Convolutional and pooling layers are used in combination
- Pooling layers usually follow convolutional layers
- ► Intuition:
  - ► The exact location of the occurrence of a feature is not important
    - Pooling helps to handle distortions and rotations



#### Capsule Networks Vector-Valued Neural Networks



### MOTIVATION



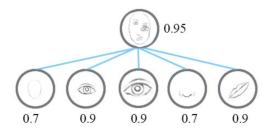
Recognized as face by CNN

"The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster."

Geoffrey Hinton



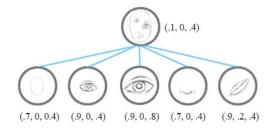
### MOTIVATION



CNN face recognition: interaction of neurons across layers

- Substructures form larger structures regardless of relative orientation and size
- ► Issue: Each neuron transmits information about existence only
- Inverse image rendering: Each neuron transmits information about existence, orientation and size

#### MOTIVATION



Capsules instead of neurons: existence of face has probability 0.1

Capsules transmitting (probability, orientation, size)



#### CAPSULES VS CNNS: VECTORS VS SCALARS

| Capsule vs. Traditional Neuron         |                         |                                                                                                               |                                                                        |  |
|----------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Input from low-level<br>capsule/neuron |                         | $\operatorname{vector}(\mathbf{u}_i)$                                                                         | $\operatorname{scalar}(x_i)$                                           |  |
|                                        | Affine<br>Transform     | $  \widehat{\mathbf{u}}_{j i} = \mathbf{W}_{ij}\mathbf{u}_i$                                                  | _                                                                      |  |
| Operation                              | Weighting               | $   \mathbf{s}_j = \sum_i c_{ij} \widehat{\mathbf{u}}_{j i} $                                                 | $\left  \begin{array}{c} a_j = \sum_i w_i x_i + b \end{array} \right $ |  |
|                                        | Sum                     |                                                                                                               |                                                                        |  |
|                                        | Nonlinear<br>Activation | $ \mid \mathbf{v}_j = \frac{\ \mathbf{s}_j\ ^2}{1+\ \mathbf{s}_j\ ^2} \frac{\mathbf{s}_j}{\ \mathbf{s}_j\ } $ | $h_j = f(a_j)$                                                         |  |
| Out                                    | tput                    | $ $ vector $(\mathbf{v}_j)$                                                                                   | $\operatorname{scalar}(h_j)$                                           |  |

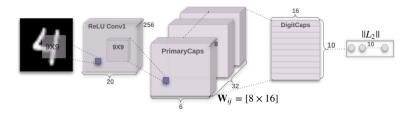
Capsules: vectors; CNNs: scalars

From: Talk on CapsNets by naturomics

▶ **Pose matrices** *W*<sub>*ij*</sub> learnt during backpropagation

► **Routing coefficients** *c*<sub>*ij*</sub> supposed to replace pooling, determined UNIVERSITAduring forward pass

#### GENERAL ADVANTAGES



CapsNet Architecture for Digit Recognition From: "Dynamic Routing Between Capsules", Sabour et al. (original paper; Figure 4)

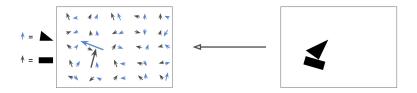
- Primary capsule layer followed by "digit capsule" layer
- Primary capsules u<sub>i</sub> code for image elements
- ► Digit capsules **s**<sub>*j*</sub> code for digits
- *Recall:*  $\mathbf{s}_j = \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$  where  $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{ij} \mathbf{u}_i$
- Coding = probability, orientation, size, ... (whatever else makes sense)



#### **Pose Matrices** W<sub>ij</sub>



#### VECTORS AND POSE MATRICES

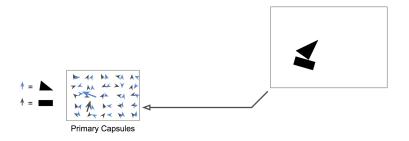


From: Capsule Networks, Tutorial by Aurelién Géron

- Length: probability that object is present
- Angle: orientation of object at location
- Line thickness, skewedness, gray scale etc: could be captured by multi-dimensional vector



#### VECTORS AND POSE MATRICES



From: Capsule Networks, Tutorial by Aurelién Géron

Boat or house? How to answer question using vectors?



## NOTATION

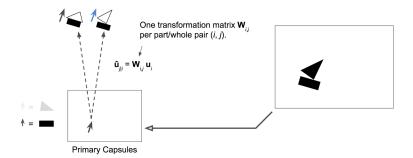
ATTENTION

► Lower layer:

- ► black = rectangle
- ► blue = triangle
- ► Higher layer:
  - ► black = house
  - ► blue = boat



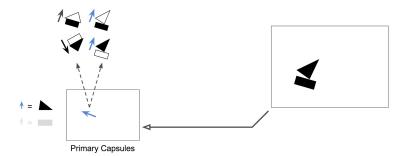
#### VECTORS AND POSE MATRICES



Probability and orientation of boat and house based on identified rectangle From: Capsule Networks, Tutorial by Aurelién Géron

- Application of pose matrix W<sub>ij</sub> to u<sub>i</sub> determines orientation of higher layer object j, boat or house; here i represents rectangle
- So,  $\hat{\mathbf{u}}_{j|i}$  reflects probability and orientation of boat and house based only using on *rectangle*

## VECTORS AND POSE MATRICES

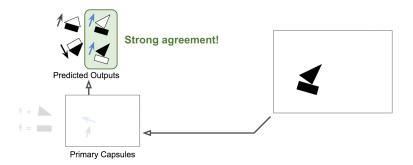


Probability and orientation of boat and house based on identified triangle From: Capsule Networks, Tutorial by Aurelién Géron

- Consider lower layer object *triangle*; here *i* represents triangle
- Here, û<sub>j|i</sub> reflects probability and orientation of boat and house based only on *triangle*

UNIVERSITÄT BIELEFELD

## VECTORS AND POSE MATRICES



Prediction of rectangle and triangle agree for boat, but not house

From: Capsule Networks, Tutorial by Aurelién Géron



## HOW TO DECIDE FURTHER?

Rectangle and triangle agree on boat, but disagree on house

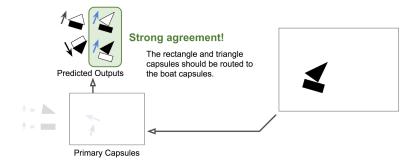
- should increase probability for boat to exist
- should decrease probability for house to exist
- ► How to make this explicit?



## **Dynamic Routing**



## MOTIVATION



Prediction of rectangle and triangle agree for boat, but not house From: Capsule Networks, Tutorial by Aurelién Géron

► Solution: Make rectangle and triangle capsule fire to boat, but not house



## CAPSULES VS CNNS: VECTORS VS SCALARS

| Capsule vs. Traditional Neuron         |                         |                                                                                                               |                              |
|----------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------|
| Input from low-level<br>capsule/neuron |                         | $\operatorname{vector}(\mathbf{u}_i)$                                                                         | $\operatorname{scalar}(x_i)$ |
|                                        | Affine<br>Transform     | $\widehat{\mathbf{u}}_{j i} = \mathbf{W}_{ij}\mathbf{u}_i$                                                    | -                            |
| Operation                              | Weighting               | $\mathbf{s}_j = \sum_i c_{ij} \widehat{\mathbf{u}}_{j i}$                                                     | $a_j = \sum_i w_i x_i + b$   |
|                                        | Sum                     |                                                                                                               |                              |
|                                        | Nonlinear<br>Activation | $ \mid \mathbf{v}_j = \frac{\ \mathbf{s}_j\ ^2}{1+\ \mathbf{s}_j\ ^2} \frac{\mathbf{s}_j}{\ \mathbf{s}_j\ } $ | $h_j = f(a_j)$               |
| Output                                 |                         | $ $ vector $(\mathbf{v}_j)$                                                                                   | $\operatorname{scalar}(h_j)$ |

Capsules: vectors; CNNs: scalars

From: Talk on CapsNets by naturomics

• *Explicit solution:* In  $\mathbf{s}_j = \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$ 

- ► *c*<sub>*ij*</sub> should be small for *j* referring to house
- *c<sub>ij</sub>* should be large for *j* referring to boat



# ROUTING COEFFICIENTS $c_{ij}$

- ▶ *i* corresponds to lower level, *j* to higher level capsule
- ► Each  $c_{ij} \in [0, 1]$
- $\sum_{j} c_{ij} = 1$  for all *i*
- ► *Task:* For each *i*, determine predominant *j*:
  - ► *c*<sub>*ij*</sub> really greater than zero only for little *j*
  - For each *i*, majority of  $c_{ij}$  close to zero
  - IS Capsule *i* fires exclusively to selected, little capsule(s) *j*
- ► How to arrange for determining *c*<sub>ij</sub> accordingly?



Procedure 1 Routing algorithm.

1: procedure ROUTING( $\hat{u}_{i|i}, r, l$ ) for all capsule *i* in layer *l* and capsule *j* in layer (l + 1):  $b_{ij} \leftarrow 0$ . 2: for r iterations do 3: for all capsule *i* in layer *l*:  $\mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$  $\triangleright$  softmax computes Eq. 3 4: for all capsule j in layer (l+1):  $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$ 5: for all capsule j in layer (l+1):  $\mathbf{v}_i \leftarrow \text{squash}(\mathbf{s}_i)$ 6:  $\triangleright$  squash computes Eq. 1 for all capsule i in layer l and capsule j in layer (l+1):  $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{i|i} \cdot \mathbf{v}_j$ 7: return  $\mathbf{v}_i$ 

#### Routing Algorithm: Pseudo Code

From: "Dynamic Routing Between Capsules", Sabour et al. (original paper)

► Softmax: 
$$c_{ij} = \frac{\exp(b_{ij})}{\sum_k \exp(b_{ik})}$$
; turns  $b_{ij}$  into "probabilities"  $c_{ij}$ 

- For large  $c_{ij}$ , agreement (by scalar product) of  $\hat{\mathbf{u}}_{j|i}$  with  $\mathbf{v}_j$  required
  - $\hat{\mathbf{u}}_{i|i}$  prediction of *j* to exist by *i* alone
  - $\hat{v}_j^{(i)}$  prediction of *j* to exist overall
- ► *Line 7:* Iterative update in that respect

UNIVERSITÄT BIELEFELD

Procedure 1 Routing algorithm.

1: procedure ROUTING( $\hat{u}_{i|i}, r, l$ ) for all capsule *i* in layer *l* and capsule *j* in layer (l + 1):  $b_{ij} \leftarrow 0$ . 2: for r iterations do 3: 4: for all capsule *i* in layer *l*:  $\mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$  $\triangleright$  softmax computes Eq. 3 5: for all capsule j in layer (l+1):  $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$ for all capsule j in layer (l + 1):  $\mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j)$ 6:  $\triangleright$  squash computes Eq. 1 for all capsule *i* in layer *l* and capsule *j* in layer (l+1):  $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{i|i} \cdot \mathbf{v}_j$ 7: return  $\mathbf{v}_i$ 

#### Routing Algorithm: Pseudo Code

From: "Dynamic Routing Between Capsules", Sabour et al. (original paper)

### Large $c_{ij}$ : large scalar product of $\hat{\mathbf{u}}_{j|i}$ with $\mathbf{s}_j$ required



**Procedure 1** Routing algorithm.

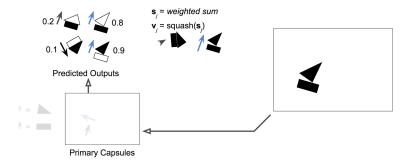
1: procedure ROUTING( $\hat{u}_{i|i}, r, l$ ) for all capsule *i* in layer *l* and capsule *j* in layer (l + 1):  $b_{ij} \leftarrow 0$ . 2: 3: for r iterations do 4: for all capsule *i* in layer *l*:  $\mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$  $\triangleright$  softmax computes Eq. 3 5: for all capsule j in layer (l+1):  $\mathbf{s}_i \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$ for all capsule j in layer (l + 1):  $\mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j)$ 6:  $\triangleright$  squash computes Eq. 1 7. for all capsule i in layer l and capsule j in layer (l+1):  $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{i|i} \cdot \mathbf{v}_{j}$ return  $\mathbf{v}_i$ 

#### Routing Algorithm: Pseudo Code

From: "Dynamic Routing Between Capsules", Sabour et al. (original paper)

- Important: Routing algorithm run during forward pass
- Routing coefficients determined for each data point individually
  - Both for labeled (training) data and unlabeled data (prediction)
  - ► Note: This is considerably slower than a forward pass in CNN's





#### Situation after Routing: Clear Vote for Boat

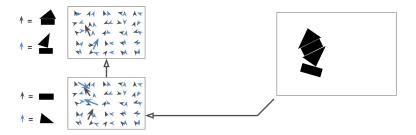
From: Capsule Networks, Tutorial by Aurelién Géron



## Advantages of Capsule Networks



## ADVANTAGES: CROWDED SCENES



Capsules Resolve Crowded Scenes

From: Capsule Networks, Tutorial by Aurelién Géron

- *Either:* Boat and house?
- Or: House upside down?



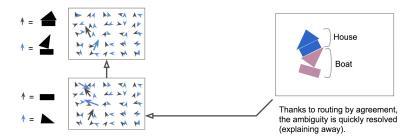
## ADVANTAGES: CROWDED SCENES



Capsules Resolve Crowded Scenes From: Capsule Networks, Tutorial by Aurelién Géron



## ADVANTAGES: CROWDED SCENES



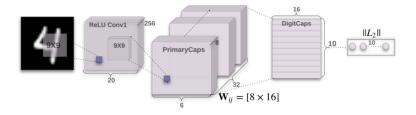
Capsules Resolve Crowded Scenes

From: Capsule Networks, Tutorial by Aurelién Géron

 Dynamic routing iteratively emphasizes boat and house, instead of house upside down



## GENERAL ADVANTAGES



#### CapsNet Architecture for Digit Recognition

From: "Dynamic Routing Between Capsules", Sabour et al. (original paper; Figure 4)

## Low depth sufficient

Require little training data
 In CNNs, training image for each angle required



# Advantages: Interpretation of Low Level Capsules

| Scale and thickness   | <b>a a a a a a a a</b> a a a a               |
|-----------------------|----------------------------------------------|
| Localized part        | 666666666666                                 |
| Stroke thickness      | <b>55555555555</b> 5555555555555555555555555 |
| Localized skew        | 444444444                                    |
| Width and translation | 1113333333333                                |
| Localized part        | 22222222222                                  |

Low Level Capsules (PrimaryCaps) enjoy Human Mind-Friendly Interpretation From: "Dynamic Routing Between Capsules", Sabour et al. (original paper; Figure 4)



## DISADVANTAGES

- Tend to see "too much" in larger images
  - losses in prediction accuracy
  - differently initialized training runs unstable
- ► Training is slow
- Implementation more complex



## References



https://academic.oup.com/bioinformatics/article/35/14/ i538/5529261

## ► Capsule Networks:

https://proceedings.neurips.cc/paper/2017/file/ 2cad8fa47bbef282badbb8de5374b894-Paper.pdf



# Outlook

- ► Disease Capsule
  - Motivation
  - Methods
  - Results
- Attention Mechanisms I
  - ► Basic Idea
- Sequence-2-Sequence Models
  - Motivation: Translating Languages
- Attention Mechanisms II
  - Transformer Architecture



Thanks for your attention

