Biological Applications of Deep Learning
Lecture 3

Alexander Schonhuth

UNIVERSITAT
BIELEFELD

I Faculty of Technology

Bielefeld University
October 26, 2022

CONTENTS TODAY

» Gradient Descent: Reminder
» The Backpropagation Algorithm

» Regularization in detail:

» L1 /L2 Regularization
» Dropout / Early Stopping

UNIVERSITAT
BIELEFELD

Reminder: Gradient Descent for Neural Networks

UNIVERSITAT
BIELEFELD

GRADIENT DESCENT

it

» Let C(v1,...,vs) be a differentiable funétion in n variables, here n = 2.
We look for the minimum of C.

» Idea: At point vy, v; (green ball), move into direction of steepest decline
(green arrow). Do this iteratively.

» The steepest decline is given by the gradient
oc oc

,,,,,

UNIVERSITAT
BIELEFELD

GRADIENT DESCENT FOR NEURAL NETWORKS

PRACTICAL SCHEME

Input

» A NN of depth L where parameters w represent both

> weights W) ¢ RIOXAI-1) 5 —1 L
» biases bf,j =1,..,L

» Let wo be appropriately chosen initial parameters
> Let X(M) ¢ R™X" y(train) ¢ R be 1 training data points x € R”
> Let
C= 357G = - 3" Clful) y(x)
be a cost function.

» One can view C = C(w) as a function in the parameters w.

UNIVERSITAT
BIELEFELD

GRADIENT DESCENT FOR NEURAL NETWORKS

PRACTICAL SCHEME

» Let 1) be an appropriately chosen learning rate.
Iteration i
1. Compute VyC(wi_1)

» Need training data to update C, based on having updated w
2. Update: w® « wi=Y 1 5v,,C
U] (i-1) ac
. i1
» bl(f) . bl(l) 7778C

b,
3. Stop, if appropriate

This minimizes the cost C, hence adjusts the NN to the training data.

UNIVERSITAT
BIELEFELD

DEEP LEARNING: CHALLENGES

» The function f representing a neural network with L layers
(with depth L) are written

y = £00) = fOFED LD))...))

where x! :f(l) (xl_l) = al(w(l)xl—l +b)
» == Functions f,, representing NN's cannot be described in
closed form

» Hence the loss C(w) := C(fw) := C(fw,f") cannot be
described in closed form either

How to compute gradients and perform gradient descent?

UNIVERSITAT
BIELEFELD

Computing Gradients: The Backpropagation Algorithm

UNIVERSITAT
BIELEFELD

NOTATION

layer 1 layer 2 layer 3

w, is the weight from the k™ neuron
in the (I —1)** layer to the j** neuron
in the I'" layer

> weight w]lk links node k in layer / — 1 with node j in layer [
> w]lk = W](IQ in the earlier notation

> Reminder: width of layer I: d(I), so W) ¢ Ré()xd(-1)

UNIVERSITAT
BIELEFELD

NOTATION

layer 1 layer 2 layer 3

> b; is the bias of neuron j in layer /

> a} is the activation value of neuron j in layer /

> b;. = b](l), a]l. = x](l), a' = x() in earlier notation

UNIVERSITAT
BIELEFELD

NOTATION

Using a sigmoid function o as activation function, we obtain
Z Wi ' + b)) ()

which can further be written
a =oWYa" 1 b)))

Remark: here and in the following, o can be replaced by an arbitrary activation
function that is differentiable.

We further define

Zwlka’k '40 thatis a4 =o(z) ®)
such that
z = (le, "'7Zt’1(l))T = W(l)al_] =+ bl that is al = o'(zl) (4)

UNIVERSITAT
BIELEFELD

NOTATION

We further write
» y(x) for the label of a training data point x

» Note: y(x) can be identified with f*(x) where f* is the true
function

» al(x), the output of the last layer, represents the network
function, so a"(x) = f(x) in earlier notation.

UNIVERSITAT
BIELEFELD

BACKPROPAGATION

Goal
» We would like to compute gradient Vy ;,C

» Therefore, we need to compute all partial derivatives

oC oC

and — (5)
1
Bb].

1
aw].k
» For further convenience, we define

o= oc
J 8z]’-

(6)

UNIVERSITAT
BIELEFELD

BACKPROPAGATION

» For further convenience, we define

oC
o= 2=
] 82}

» For example, by the chain rule of differentiation (1):

oc D g% 514(kalk”lk g
ab; - Jabl - 6b}’ - j @)
o 5! 82 _ 4l (ka]ka£*1+b§) B 5la
oWl jaw]’.k* N/ O - ke

» Idea: Focus on computing ¢!, derive 2 o C and BC by (7)

UNIVERSITAT
BIELEFELD

NOTATION

» Let m be the total number of training examples. Then we
define C

CF.f) = Clat) = 5 S Iy —d (I ®)

as quadratic cost function (only for easier presentation!)

» Note: y resp. f*(x) are fixed, so C varies in a’ (= f) only.

» Important: C = % >+ Cy where Cy = %||y(x) —al(x)||? is the
cost on one individual training example

» Idea: Compute ‘;f‘j‘, %Cbx for all training data x and recover

oC oC ;
So» 55 by averaging over x

UNIVERSITAT
BIELEFELD

DEFINITION

THE HADAMARD PRODUCT

Definition
Let s, t € R" be two vectors of equal length. Then the Hadamard
product s ® tis defined by

(sot)j=s;j-tj forj=1,..,n)

UNIVERSITAT
BIELEFELD

BACKPROPAGATION

START: OUTPUT LAYER — COMPUTING &°

We have ajL = a(sz), SO
i
5= 2 _ v oC oa 57N OC sy
I 0z} B — Ong 0z} -~ Oab J

UNIVERSITAT
BIELEFELD

(10)

(11)

BACKPROPAGATION

START: OUTPUT LAYER — COMPUTING &°

Further
o' (z) = o(z)(1 - o(2))
and) .
oC 8(§ Z]I (y]/ — ﬂ]-,)) L
oL~ al = (a7 —),
]
so overall

o = (af —y;)o(z)(1 —o(z])) (12)

UNIVERSITAT
BIELEFELD

BACKPROPAGATION

START: OUTPUT LAYER — COMPUTING &°
0f = (af —y)o'(z}) thatis o' =(@"—y)od(z") 13

Interpretation

> ajL — y; determines how far off a]-L from y; is

» The further off, the steeper the gradient, the greater the
adjustment

> o (z]L) is close to zero if a(z].L) is either close to zero or close

to one

» This can make sense, but can cause problems, because
updates get very small (note remarks on alternative
wversidctivation functions)

BIELEFELD

EXAMPLE
MNIST NETWORK

» Truth: One y; is one, all others are zero

> If a]-L is not one, updates are large: we need to make changes

» If 11]-L is close to one, and all others are close to zero, updates are

I oy csmismall: no further adjustments necessary

PROPAGATION — COMPUTING §' FROM §'*1

We compute

aC oC ozt ozt
51 _ - _ Z kK _ Z k 6l+1 (14)
j 1 1 1 T %
8zj P 0z, azj p 82].
We further observe
1+1 Z wl+1al n bl+1 Z wl+1)+ bl+1 (15)

which, by differentiation, leads to

azl-‘rl
k= wile'(2h)
0z / J

j

UNIVERSITAT
BIELEFELD

(16)

BACKPROPAGATION

PROPAGATION — COMPUTING &' FROM &1

Substituting (16) into (14), we obtain

Z wl+15l+1 / (17)

which can be overall expressed as

51 _ ((w(l+1))T(Sl+l) ® (T/(Zl) (18)

> (18) “moves the error one layer backward” s backpropagation

» Applying WU+ to 541 moves the error from the input of
neurons in layer [+ 1 to the outputs of neurons in layer /

» o'(z') moves the error from the output of neurons in layer ! to
the inputs of neurons in layer /

UNIVERSITAT
BIELEFELD

BACKPROPAGATION

COMPUTING STJC,’- AND %ﬁk
We further see that 5C
== (19)
7 j
8bj
and ac
O] (20)
Wiy

(20) explains that changes in weights are small if the input is small, or
the error in the output is small:

UNIVERSITAT
BIELEFELD

BACKPROPAGATION

THE EQUATIONS

Summary: the equations of backpropagation

=V.C oo (zh) (BP1)
& = ((whH)TeH) @ o' (1) (BP2)
oC __ gl .
{)1, 6 (BP3)

aul, = M (BP4)

UNIVERSITAT
BIELEFELD

BACKPROPAGATION

THE ALGORITHM

1.

UNIVERSITAT
BIELEFELD

Input x: Set the corresponding activation ' for the input

layer.

.Feedforward: Foreach /= 2,3, ..., L compute

7 =wla=' + b and d' = 6(z)).

. Output error §*: Compute the vector 5 = V,C © ¢/(zh).

. Backpropagate the error: Foreach/=L-1,L-2,...,2

compute &' = (W*H75+) @ ¢'(Z).

. Output- The gradient of the cost function is given by

oC] oC]
=d 5 an =5
ol k d 7 0};’ J

BACKPROPAGATION

STOCHASTIC GRADIENT DESCENT
1. Input a set of training examples

2. For each training example x: Set the corresponding input

activation ¢*!, and perform the following steps:

o Feedforward: Foreach/=2,3, ..., L compute

Z.\‘.l — W[ax,l—l + bl and ax.[= (T(Z"l).

o Output error §“*: Compute the vector
5L =v,C, 00" (Z%h).

o Backpropagate the error: For each
I=L-1,L-2,...,2 compute
&9l = ((wl+])T{<}r,l+]) o) O'/(Zx‘,).

3. Gradient descent: Foreach/ = L,L — 1, ..., 2 update the
weights according to the rule w! — w! — 2 3 5(a*"1)T, and

the biases according to the rule o — b/ — L ¥ 5%/,

UNIVERSITAT
BIELEFELD

Employing Regularization

UNIVERSITAT
BIELEFELD

REGULARIZATION REVISITED

MOTIVATION

UNIVERSITAT
BIELEFELD

100

98

96

90

—— Accuracy on the test data
Accuracy on the training data

n
5 10 15 20 25
Epoch

No regularization leads to overfitting

30

L2-REGULARIZED CROSS ENTROPY

We add a L2 regularization term to the cost (here:
cross-entropy). Thereby A is the reqularization parameter.

1
C= —%ZZWogaer (1—y;) log(1—ap)] + % S w? Q1)
X] ”

Writing Co = —L >~ >_ilyjlog ajL + (1 —y;)log(1 - a].L)] then
makes

A 2
C_C0+mzw:w (22)

Remark: This can be done with any cost function Cp.

UNIVERSITAT
BIELEFELD

L2-REGULARIZED CROSS ENTROPY

This further yields the partial derivatives

oC _ 9Cy A

ow ow + e (23)
oC _ 0GCy

9 " b @4

with update rules (rescaling weights with (1 — %) is called weight decay)

9Co
0o Ao q My, G
wewfn%fn%w—(m)w 0 (26)

Update rules for stochastic gradient descent, for overall m training data, batch

size i
_ N 9G
b«b - d b (27)
we (1- Py 1 0 (28)

m m ow
UNIVERSITAT X
BIELEFELD

L2 REGULARIZATION

EXPLANATIONS

» For sake of better illustration, consider

» Cj to be a quadratic cost function, like mean squared loss

» In general, one can consider the quadratic (second order
term) approximation of Cy

» only one training example, that is m = 1 in the following

» Let
w* := arg min Cy(w) (29)

w

be the true minimum (which we don’t know).

» Let k be the length of w (so k the number of weights to be
trained)

UNIVERSITAT
BIELEFELD

L2 REGULARIZATION

EXPLANATIONS

» Let the Hessian matrix H € R** be defined by

0Co

Hyw =
we owow'’

(30)

» The gradient of Cy vanishes at w*, because w* is the minimum.

» By Taylor’s approximation, because Cy is quadratic, we know
that

1
Co(w) = Co(w") + 5(w — w*)TH(w — w*) (31)
» That means that the minimum of Cy appears where

VwCo(w) =H(w —w*) =0 (32)

UNIVERSITAT
BIELEFELD

L2 REGULARIZATION

EXPLANATIONS

> Let w be the minimum of C = Cy + 1 ||w|?

» Recalling % = % + Aw (see (23) with m = 1), we know that
Hw-w")+ W =0 (33)

» This further leads to (I is the identity)

w = (H+ \I) " 'Hw* (34)

» For A — 0, wegetw — w*

UNIVERSITAT
BIELEFELD

L2 REGULARIZATION

EXPLANATIONS

» Let D be diagonal where entries D;; are the eigenvalues of H
» Let Q collect the eigenvectors of H

» Since H is real and symmetric, Q is orthogonal, and H can be
written
H = QDQ’ (35)

» Substituting (35) in (34), we obtain
w = (QDQ" + AI) 'QDQ’w* (36)
» further yielding

w = Q(D + \I)"'DQ’w* (37)

UNIVERSITAT
BIELEFELD

L2 REGULARIZATION

EXPLANATIONS
» Interpretation:

» wis arescaled version of w*
» The component of w* that aligns with the i-th eigenvector
of H is rescaled by a factor of

D;
Dii + A

(38)

» Eigenvectors of H referring to large eigenvalues indicate
directions where the gradient rapidly changes (increases when
going away from w*, where it is zero)

» Eigenvectors of H referring to small eigenvalues indicate
directions where the gradient hardly changes

» The latter directions can be neglected

» In other words, components of weights referring to such
I vy ersmidirections can be decayed away by regularization
BIELEFELD

REGULARIZATION REVISITED

MOTIVATION

-

—

g -

7/
/

-

-t

t
\

”~
[

\
NS

~

L2 regularization shrinks weights along eigenvectors of the Hessian

UNIVERSITAT
BIELEFELD

REGULARIZATION REVISITED

MOTIVATION

100

98-

96

941

921

—— Accuracy on the test data
: Accuracy on the training data
9 5 10 i 2 25
Epoch
) Regularization prevents overfitting
UNIVERSITAT

BIELEFELD

REGULARIZATION REVISITED

L1 REGULARIZATION
For L1 regularization, we modify the cost function
C=C +§Z|w\ (39)

by adding the sum of the absolute values of the weights.

Gradient: aC oC \
_ 0, A
Update:
L\ _ 9%
wew =0 sgn(w) —n 5w (41)

UNIVERSITAT
BIELEFELD

L1 REGULARIZATION

EXPLANATIONS

» L1 regularization does not have a similarly neat algebraic
explanation like L2 regularization

» An approximate explanation is that components referring to
small eigenvalues of the Hessian are set to zero, rather than
smoothly shrunken

» Overall, a sparse set of weights is achieved

UNIVERSITAT
BIELEFELD

REGULARIZATION REVISITED

L1 VERSUS L2 REGULARIZATION

» In L1 regularization, weights shrink by a constant amount.

» In L2 regularization, weights shrink by an amount
proportionally to w.

» L1 regularization tends to bring forward a small number of
high-importance connections.

» L2 regularization tends to keep all weights small.

UNIVERSITAT
BIELEFELD

REGULARIZATION REVISITED

DrorouT

REGULARIZATION REVISITED

DrorouT

REGULARIZATION REVISITED

DrorouT

Procedure
1. Choose a mini batch of training data of size m

2. Randomly delete half of the hidden nodes, while keeping
all input and output nodes

3. Train the resulting network using the mini batch; update
all weights and biases

4. If validation accuracy not yet satisfying, return to 1.

5. After each epoch, decrease each weight by a factor of %

UNIVERSITAT
BIELEFELD

DROPOUT

EXPLANATIONS

» Dropout can be perceived as averaging over several
smaller networks, where averaging over several models is
generally helpful to prevent overfitting

» Dropout can be perceived as projecting points in
parameter space onto the linear subspace defined by only
half of the elementary basis vectors.

» Combining optima in subspaces yields a selection of
parameters that are not optimal, but nearby an optimum
1 experience shows that this prevents overfitting

» Dropout prevents “co-adaptation of neurons”

UNIVERSITAT
BIELEFELD

L1/2 REGULARIZATION, DROPOUT, EARLY STOPPING

TAKE-HOME MESSAGE

Try to find a reasonable point near the very optimum

» L1/2 regularization: shrink or eliminate weights that don’t
change much

» Dropout: Randomly project points to linear subspaces, and
optimize there, and then average out

» Early stopping: Stop before reaching the optimum

UNIVERSITAT
BIELEFELD

REGULARIZATION REVISITED

ARTIFICIAL EXPANSION OF TRAINING DATA

100 Accuracy (%) on the validation data

65

60 L
10? 10° 10*
Training set size

More training data improves test accuracy

UNIVERSITAT
BIELEFELD

REGULARIZATION REVISITED

ARTIFICIAL EXPANSION OF TRAINING DATA

90 e

80 -
o
70 /

60

50 o

40

o o Neural network accuracy (%)
30 o © SVM accuracy (%)

10? 10° 10°
Training set size

NN versus SVM on same training data

» Sometimes better training data delivers substantial improvements
» Always good to aim for methodical improvements, but:

» Don’t miss “easy wins” by generating more and/or better training data

UNIVERSITAT
BIELEFELD

REGULARIZATION REVISITED

GENERATING ARTIFICIAL TRAINING DATA

>

Rotating 5 by 15 degrees to the left yields new training datum

Other Techniques

» Translating, skewing
» “Elastic distortions”

» For more details, see [Simard, Steinkraus & Platt, 2003]
https://ieeexplore.ieee.org/document /1227801

UNIVERSITAT
BIELEFELD

https://ieeexplore.ieee.org/document/1227801

LECTURE3: SUMMARY

Backpropagation: See http://www.deeplearningbook.org/ 6.5
and http://neuralnetworksanddeeplearning.com/, Chapter 2,
until and including “The Backpropagation Algorithm”

Regularization: See http://www.deeplearningbook.org/
Chapter 7, (for example 7.1, 7.8, 7.12) and
http://neuralnetworksanddeeplearning.com/, Chapter 3

For further reading, also consider:

Read “In what sense is backpropagation a fast algorithm?” in Nielsen’s
book, chapter 2
(http://neuralnetworksanddeeplearning.com/chap2.html),

Read “Backpropagation: the big picture” in Nielsen’s book, chapter 2

and try to make sense of what you have read.

UNIVERSITAT

BIELEFELD

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/chap2.html

OUTLOOK

» Convolutional Neural Networks
» http://www.deeplearningbook.org/, Chapter 9

» http://neuralnetworksanddeeplearning.com/,
“Deep Learning”

UNIVERSITAT
BIELEFELD

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/

Thanks for your attention

UNIVERSITAT
BIELEFELD

