# Biological Applications of Deep Learning Lecture 3

Alexander Schönhuth



Bielefeld University October 26, 2022

### CONTENTS TODAY

- ► Gradient Descent: Reminder
- ► The Backpropagation Algorithm
- ► Regularization in detail:
  - ► L1 / L2 Regularization
  - Dropout / Early Stopping



#### Reminder: Gradient Descent for Neural Networks



### GRADIENT DESCENT



- ► Let C(v<sub>1</sub>,...,v<sub>n</sub>) be a differentiable function in *n* variables, here n = 2. We look for the minimum of C.
- Idea: At point v<sub>1</sub>, v<sub>2</sub> (green ball), move into direction of steepest decline (green arrow). Do this iteratively.
- The steepest decline is given by the gradient

$$abla_{v_1,...,v_n}C = (rac{\partial C}{\partial v_1},...,rac{\partial C}{\partial v_n})$$



# GRADIENT DESCENT FOR NEURAL NETWORKS

PRACTICAL SCHEME

#### Input

- ► A NN of depth *L* where parameters **w** represent both
  - weights  $\mathbf{W}^{(j)} \in \mathbb{R}^{d(l) \times d(l-1)}, j = 1, ..., L$
  - biases  $\mathbf{b}^j, j = 1, ..., L$
- ► Let **w**<sup>0</sup> be appropriately chosen initial parameters
- ► Let  $\mathbf{X}^{(\text{train})} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{y}^{(\text{train})} \in \mathbb{R}^m$  be *m* training data points  $x \in \mathbb{R}^n$
- ► Let

$$C = \frac{1}{m} \sum_{x} C_x = \frac{1}{m} \sum_{x} C(f_{\mathbf{w}}(x), y(x))$$

be a cost function.

• One can view  $C = C(\mathbf{w})$  as a function in the parameters  $\mathbf{w}$ .



#### GRADIENT DESCENT FOR NEURAL NETWORKS PRACTICAL SCHEME

• Let  $\eta$  be an appropriately chosen *learning rate*.

Iteration i

- 1. Compute  $\nabla_{\mathbf{w}} C(\mathbf{w}_{i-1})$ 
  - ▶ Need training data to update *C*, based on having updated **w**
- 2. Update:  $\mathbf{w}^{(i)} \leftarrow \mathbf{w}^{(i-1)} + \eta \nabla_{\mathbf{w}} C$

$$\quad \bullet \quad w_k^{(i)} \leftarrow w_k^{(i-1)} - \eta \frac{\partial C}{\partial w_k} \\ \quad \bullet \quad b_l^{(i)} \leftarrow b_l^{(i-1)} - \eta \frac{\partial C}{\partial b_l}$$

3. Stop, if appropriate

This minimizes the cost *C*, hence adjusts the NN to the training data.



### DEEP LEARNING: CHALLENGES

The function *f* representing a neural network with *L* layers (with depth *L*) are written

$$y = f(\mathbf{x}^0) = f^{(L)}(f^{(L-1)}(\dots(f^{(1)}(\mathbf{x}^{(0)}))\dots))$$

where  $\mathbf{x}^{l} = f^{(l)}(\mathbf{x}^{l-1}) = \mathbf{a}^{l}(\mathbf{W}^{(l)}\mathbf{x}^{l-1} + \mathbf{b}^{l})$ 

- Functions *f*<sub>w</sub> representing NN's cannot be described in closed form
- ► Hence the loss C(w) := C(f<sub>w</sub>) := C(f<sub>w</sub>, f<sup>\*</sup>) cannot be described in closed form either

How to compute gradients and perform gradient descent?



#### Computing Gradients: The Backpropagation Algorithm





- ▶ weight w<sup>l</sup><sub>jk</sub> links node k in layer l − 1 with node j in layer l
   ▶ w<sup>l</sup><sub>jk</sub> = W<sup>(l)</sup><sub>jk</sub> in the earlier notation
- *Reminder*: width of layer *l*: d(l), so  $\mathbf{W}^{(l)} \in \mathbb{R}^{d(l) \times d(l-1)}$





- $b_i^l$  is the bias of neuron *j* in layer *l*
- $a_i^l$  is the activation *value* of neuron *j* in layer *l*

► 
$$b_j^l = \mathbf{b}_j^{(l)}, a_j^l = \mathbf{x}_j^{(l)}, \mathbf{a}^l = \mathbf{x}^{(l)}$$
 in earlier notation



Using a sigmoid function  $\sigma$  as activation function, we obtain

$$a_j^l = \sigma(\sum_k w_{jk}^l a_k^{l-1} + b_j^l) \tag{1}$$

which can further be written

$$\mathbf{a}^{l} = \sigma(\mathbf{W}^{(l)}\mathbf{a}^{l-1} + \mathbf{b}^{l})$$
(2)

*Remark*: here and in the following,  $\sigma$  can be replaced by an *arbitrary activation function that is differentiable*.

We further define

$$z_j^l = \sum_k w_{jk}^l a_k^{l-1} + b_j^l \quad \text{that is} \quad a_j^l = \sigma(z_j^l) \tag{3}$$

such that

$$\mathbf{z}^{l} := (z_{1}^{l}, ..., z_{d(l)}^{l})^{T} = \mathbf{W}^{(l)} \mathbf{a}^{l-1} + \mathbf{b}^{l} \quad \text{that is} \quad \mathbf{a}^{l} = \sigma(\mathbf{z}^{l})$$
(4)



We further write

- y(x) for the label of a training data point x
- ► Note: y(x) can be identified with f\*(x) where f\* is the true function
- ►  $\mathbf{a}^{L}(x)$ , the output of the last layer, represents the network function, so  $\mathbf{a}^{L}(x) = f(x)$  in earlier notation.



Goal

- We would like to compute gradient  $\nabla_{\mathbf{W},\mathbf{b}}C$
- ► Therefore, we need to compute all partial derivatives

$$\frac{\partial C}{\partial w_{jk}^l}$$
 and  $\frac{\partial C}{\partial b_j^l}$  (5)

► For further convenience, we define

$$\delta_j^l := \frac{\partial C}{\partial z_j^l} \tag{6}$$



► For further convenience, we define

$$\delta_j^l := \frac{\partial C}{\partial z_j^l}$$

► For example, by the chain rule of differentiation (†):

$$\frac{\partial C}{\partial b_j^l} \stackrel{(\dagger)}{=} \delta_j^l \frac{\partial z_j^l}{\partial b_j^l} = \delta_j^l \frac{\partial (\sum_k w_{jk}^l a_k^{l-1} + b_j^l)}{\partial b_j^l} = \delta_j^l \\
\frac{\partial C}{\partial w_{jk^*}^l} \stackrel{(\dagger)}{=} \delta_j^l \frac{\partial z_j^l}{\partial w_{jk^*}^l} = \delta_j^l \frac{\partial (\sum_k w_{jk}^l a_k^{l-1} + b_j^l)}{\partial w_{jk^*}^l} = \delta_j^l a_{k^*}^{l-1}$$
(7)

• *Idea*: Focus on computing  $\delta_j^l$ , derive  $\frac{\partial C}{\partial b_j^l}$  and  $\frac{\partial C}{\partial w_{jk}^l}$  by (7)



Let *m* be the total number of training examples. Then we define *C* 

$$C(f, f^*) = C(a^L) := \frac{1}{2m} \sum_{x} ||y(x) - a^L(x)||^2$$
(8)

as quadratic cost function (only for easier presentation!)

- ► *Note*: y resp.  $f^*(x)$  are fixed, so C varies in  $a^L$  (= f) only.
- ► *Important*:  $C = \frac{1}{m} \sum_{x} C_x$  where  $C_x = \frac{1}{2} ||y(x) a^L(x)||^2$  is the cost on one individual training example
- ► *Idea*: Compute  $\frac{\delta C_x}{\delta w}$ ,  $\frac{\delta C_x}{\delta b}$  for all training data *x* and recover  $\frac{\delta C}{\delta w}$ ,  $\frac{\delta C}{\delta b}$  by averaging over *x*



# Definition

THE HADAMARD PRODUCT

# Definition Let $\mathbf{s}, \mathbf{t} \in \mathbb{R}^n$ be two vectors of equal length. Then the *Hadamard product* $\mathbf{s} \odot \mathbf{t}$ is defined by

$$(\mathbf{s} \odot \mathbf{t})_j = \mathbf{s}_j \cdot \mathbf{t}_j \quad \text{for } j = 1, ..., n$$
 (9)



Start: Output Layer – Computing  $\delta^L$ 

We have 
$$a_j^L = \sigma(z_j^L)$$
, so

$$\delta_{j}^{L} = \frac{\partial C}{\partial z_{j}^{L}} = \sum_{k} \frac{\partial C}{\partial a_{k}^{L}} \frac{\partial a_{k}^{L}}{\partial z_{j}^{L}} \stackrel{\frac{\partial a_{k}^{L}}{\partial z_{j}^{L}} = 0, j \neq k}{\partial a_{j}^{L}} \frac{\partial C}{\partial a_{j}^{L}} \cdot \sigma'(z_{j}^{L})$$
(10)

In other words,

$$\delta^{L} = \nabla_{\mathbf{a}^{L}} C \odot \sigma'(\mathbf{z}^{L}) \tag{11}$$



Start: Output Layer – Computing  $\delta^L$ 

Further

$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

#### and

$$\frac{\partial C}{\partial a_j^L} = \frac{\partial (\frac{1}{2}\sum_{j'}(y_{j'} - a_{j'}^L)^2)}{\partial a_j^L} = (a_j^L - y_j),$$

so overall

$$\delta_j^L = (a_j^L - y_j)\sigma(z_j^L)(1 - \sigma(z_j^L))$$
(12)



START: OUTPUT LAYER – COMPUTING  $\delta^L$ 

$$\delta_j^L = (a_j^L - y_j)\sigma'(z_j^L) \quad \text{that is} \quad \delta^L = (\mathbf{a}^L - \mathbf{y}) \odot \sigma'(\mathbf{z}^L) \quad (13)$$

Interpretation

- $a_j^L y_j$  determines how far off  $a_j^L$  from  $y_j$  is
- The further off, the steeper the gradient, the greater the adjustment
- σ'(z<sub>j</sub><sup>L</sup>) is close to zero if σ(z<sub>j</sub><sup>L</sup>) is either close to zero or close
   to one
- This can make sense, but can cause problems, because updates get very small (note remarks on alternative UNIVERSITXACTIVATION functions)

#### EXAMPLE MNIST Network



- ► *Truth*: One *y*<sup>*j*</sup> is one, all others are zero
- If  $a_i^L$  is not one, updates are large: we need to make changes

• If  $a_j^L$  is close to one, and all others are close to zero, updates are UNIVERSITÄS mall: no further adjustments necessary

# PROPAGATION – COMPUTING $\delta^l$ from $\delta^{l+1}$

We compute

$$\delta_j^l = \frac{\partial C}{\partial z_j^l} = \sum_k \frac{\partial C}{\partial z_k^{l+1}} \frac{\partial z_k^{l+1}}{\partial z_j^l} = \sum_k \frac{\partial z_k^{l+1}}{\partial z_j^l} \delta_k^{l+1}$$
(14)

We further observe

$$z_k^{l+1} = \sum_j w_{kj}^{l+1} a_j^l + b_k^{l+1} = \sum_j w_{kj}^{l+1} \sigma(z_j^l) + b_k^{l+1}$$
(15)

which, by differentiation, leads to

$$\frac{\partial z_k^{l+1}}{\partial z_j^l} = w_{kj}^{l+1} \sigma'(z_j^l) \tag{16}$$



#### PROPAGATION – COMPUTING $\delta^l$ from $\delta^{l+1}$

Substituting (16) into (14), we obtain

$$\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l) \tag{17}$$

which can be overall expressed as

$$\delta^{l} = ((\mathbf{W}^{(l+1)})^{T} \delta^{l+1}) \odot \sigma'(z^{l})$$
(18)

- ► (18) "moves the error one layer backward" Schward to backpropagation
- Applying W<sup>(l+1)</sup> to δ<sup>l+1</sup> moves the error from the input of neurons in layer l + 1 to the outputs of neurons in layer l
- σ'(z<sup>l</sup>) moves the error from the output of neurons in layer *l* to the inputs of neurons in layer *l*

UNIVERSITÄ BIELEFELD

Computing  $\frac{\partial C}{\partial b_j^l}$  and  $\frac{\partial C}{\partial w_{jk}^l}$ 

We further see that

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{19}$$

and

$$\frac{\partial C}{\partial w_{jk}^{l}} = a_{k}^{l-1} \delta_{j}^{l} \tag{20}$$

(20) explains that changes in weights are small if the input is small, or the error in the output is small:





THE EQUATIONS

Summary: the equations of backpropagation  $\delta^L = \nabla_a C \odot \sigma'(z^L)$ (BP1)  $\delta^{l} = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$ (BP2) $\frac{\partial C}{\partial b_j^l} = \delta_j^l$ (BP3) $\frac{\partial C}{\partial w_{ik}^l} = a_k^{l-1} \delta_j^l$ (BP4)



THE ALGORITHM

- 1. **Input** *x*: Set the corresponding activation *a*<sup>1</sup> for the input layer.
- 2. **Feedforward:** For each l = 2, 3, ..., L compute  $z^{l} = w^{l}a^{l-1} + b^{l}$  and  $a^{l} = \sigma(z^{l})$ .
- 3. **Output error**  $\delta^L$ : Compute the vector  $\delta^L = \nabla_a C \odot \sigma'(z^L)$ .
- 4. Backpropagate the error: For each l = L 1, L 2, ..., 2compute  $\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$ .
- 5. **Output:** The gradient of the cost function is given by  $\frac{\partial C}{\partial w_{jk}^{l}} = a_{k}^{l-1} \delta_{j}^{l} \text{ and } \frac{\partial C}{\partial b_{j}^{l}} = \delta_{j}^{l}.$

UNIVERSITÄT BIELEFELD

#### BACKPROPAGATION STOCHASTIC GRADIENT DESCENT

#### 1. Input a set of training examples

- For each training example *x*: Set the corresponding input activation *a<sup>x,1</sup>*, and perform the following steps:
  - **Feedforward:** For each l = 2, 3, ..., L compute  $z^{x,l} = w^l a^{x,l-1} + b^l$  and  $a^{x,l} = \sigma(z^{x,l})$ .
  - **Output error**  $\delta^{x,L}$ : Compute the vector  $\delta^{x,L} = \nabla_a C_x \odot \sigma'(z^{x,L}).$
  - Backpropagate the error: For each

 $l = L - 1, L - 2, \dots, 2$  compute

- $\delta^{\boldsymbol{x},l} = ((w^{l+1})^T \delta^{\boldsymbol{x},l+1}) \odot \sigma'(\boldsymbol{z}^{\boldsymbol{x},l}).$
- 3. **Gradient descent:** For each l = L, L 1, ..., 2 update the weights according to the rule  $w^l \to w^l \frac{\eta}{m} \sum_x \delta^{x,l} (a^{x,l-1})^T$ , and the biases according to the rule  $b^l \to b^l \frac{\eta}{m} \sum_x \delta^{x,l}$ .



#### **Employing Regularization**



#### MOTIVATION



No regularization leads to overfitting



#### L2-REGULARIZED CROSS ENTROPY

We add a L2 regularization term to the cost (here: cross-entropy). Thereby  $\lambda$  is the *regularization parameter*.

$$C = -\frac{1}{m} \sum_{x} \sum_{j} [y_{j} \log a_{j}^{L} + (1 - y_{j}) \log(1 - a_{j}^{L})] + \frac{\lambda}{2m} \sum_{w} w^{2} \quad (21)$$
  
Writing  $C_{0} = -\frac{1}{m} \sum_{x} \sum_{j} [y_{j} \log a_{j}^{L} + (1 - y_{j}) \log(1 - a_{j}^{L})]$  then  
makes  
$$C = C_{0} + \frac{\lambda}{m} \sum_{w} w^{2} \quad (22)$$

*Remark*: This can be done with any cost function  $C_0$ .



### L2-REGULARIZED CROSS ENTROPY

This further yields the partial derivatives

$$\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \frac{\lambda}{m} w \tag{23}$$
$$\frac{\partial C}{\partial b} = \frac{\partial C_0}{\partial b} \tag{24}$$

with *update rules* (rescaling weights with  $(1 - \frac{\eta \lambda}{m})$  is called *weight decay*)

$$b \leftarrow b - \eta \frac{\partial C_0}{\partial b} \tag{25}$$

$$w \leftarrow w - \eta \frac{\partial C_0}{\partial w} - \eta \frac{\lambda}{m} w = (1 - \frac{\eta \lambda}{m})w - \eta \frac{\partial C_0}{\partial w}$$
(26)

Update rules for *stochastic gradient descent*, for overall *m* training data, batch size  $\hat{m}$ :

$$b \leftarrow b - \frac{\eta}{\hat{m}} \sum_{x} \frac{\partial C_x}{\partial b}$$
 (27)

$$w \leftarrow (1 - \frac{\eta \lambda}{m})w - \frac{\eta}{\hat{m}} \sum_{x} \frac{\partial C_x}{\partial w}$$
 (28)



**EXPLANATIONS** 

#### ► For sake of better illustration, consider

- ► *C*<sup>0</sup> to be a quadratic cost function, like mean squared loss
- In general, one can consider the quadratic (second order term) approximation of C<sub>0</sub>
- only one training example, that is m = 1 in the following

► Let

$$\mathbf{w}^* := \operatorname*{arg\,min}_{\mathbf{w}} C_0(\mathbf{w}) \tag{29}$$

be the true minimum (which we don't know).

Let *k* be the length of w (so *k* the number of weights to be trained)



**EXPLANATIONS** 

• Let the *Hessian matrix*  $\mathbf{H} \in \mathbb{R}^{k \times k}$  be defined by

$$\mathbf{H}_{ww'} = \frac{\partial C_0}{\partial w \partial w'} \tag{30}$$

- ► The gradient of *C*<sup>0</sup> vanishes at **w**<sup>\*</sup>, because **w**<sup>\*</sup> is the minimum.
- ► By Taylor's approximation, because *C*<sup>0</sup> is quadratic, we know that

$$C_0(\mathbf{w}) = C_0(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$
(31)

▶ That means that the minimum of *C*<sup>0</sup> appears where

$$\nabla_{\mathbf{w}} C_0(\mathbf{w}) = \mathbf{H}(\mathbf{w} - \mathbf{w}^*) = \mathbf{0}$$
(32)



**EXPLANATIONS** 

• Let  $\tilde{\mathbf{w}}$  be the minimum of  $C = C_0 + \frac{1}{2} ||\mathbf{w}||^2$ 

• Recalling  $\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \lambda w$  (see (23) with m = 1), we know that

$$\mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) + \lambda \tilde{\mathbf{w}} = 0 \tag{33}$$

► This further leads to (I is the identity)

$$\tilde{\mathbf{w}} = (\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^*$$
(34)

• For 
$$\lambda \to 0$$
, we get  $\tilde{\mathbf{w}} \to \mathbf{w}^*$ 



**EXPLANATIONS** 

- ► Let **D** be diagonal where entries **D**<sub>*ii*</sub> are the eigenvalues of **H**
- ► Let **Q** collect the eigenvectors of **H**
- Since H is real and symmetric, Q is orthogonal, and H can be written

$$\mathbf{H} = \mathbf{Q}\mathbf{D}\mathbf{Q}^T \tag{35}$$

► Substituting (35) in (34), we obtain

$$\tilde{\mathbf{w}} = (\mathbf{Q}\mathbf{D}\mathbf{Q}^T + \lambda \mathbf{I})^{-1}\mathbf{Q}\mathbf{D}\mathbf{Q}^T\mathbf{w}^*$$
(36)

► further yielding

$$\tilde{\mathbf{w}} = \mathbf{Q}(\mathbf{D} + \lambda \mathbf{I})^{-1} \mathbf{D} \mathbf{Q}^T \mathbf{w}^*$$
(37)



**EXPLANATIONS** 

- ► Interpretation:
  - $\tilde{\mathbf{w}}$  is a rescaled version of  $\mathbf{w}^*$
  - The component of w\* that aligns with the *i*-th eigenvector of H is rescaled by a factor of

$$\frac{\mathbf{D}_{ii}}{\mathbf{D}_{ii} + \lambda} \tag{38}$$

- Eigenvectors of H referring to large eigenvalues indicate directions where the gradient rapidly changes (increases when going away from w<sup>\*</sup>, where it is zero)
- Eigenvectors of H referring to small eigenvalues indicate directions where the gradient hardly changes
- ► The latter directions can be neglected

► In other words, components of weights referring to such UNIVERSITÄ directions can be decayed away by regularization

#### MOTIVATION



L2 regularization shrinks weights along eigenvectors of the Hessian



#### MOTIVATION



Regularization prevents overfitting



L1 REGULARIZATION

For L1 regularization, we modify the cost function

$$C = C_0 + \frac{\lambda}{m} \sum_{w} |w| \tag{39}$$

by adding the sum of the absolute values of the weights.

Gradient:

$$\frac{\partial C}{\partial w} = \frac{\partial C_0}{\partial w} + \frac{\lambda}{m} \operatorname{sgn}(w)$$
(40)

Update:

$$w \leftarrow w' = w - \frac{\eta \lambda}{m} \operatorname{sgn}(w) - \eta \frac{\partial C_0}{\partial w}$$
 (41)



**EXPLANATIONS** 

- L1 regularization does not have a similarly neat algebraic explanation like L2 regularization
- An approximate explanation is that components referring to small eigenvalues of the Hessian are set to zero, rather than smoothly shrunken
- ► Overall, a *sparse* set of weights is achieved



L1 VERSUS L2 REGULARIZATION

- ► In L1 regularization, weights shrink by a *constant* amount.
- ► In L2 regularization, weights shrink by an amount *proportionally* to *w*.
- L1 regularization tends to bring forward a small number of high-importance connections.
- ► L2 regularization tends to keep all weights small.



#### DROPOUT



Full network, before dropout



#### DROPOUT



Network after having dropped half of the hidden nodes



DROPOUT

Procedure

- 1. Choose a mini batch of training data of size  $\hat{m}$
- 2. Randomly delete half of the hidden nodes, while keeping all input and output nodes
- 3. Train the resulting network using the mini batch; update all weights and biases
- 4. If validation accuracy not yet satisfying, return to 1.
- 5. After each epoch, decrease each weight by a factor of  $\frac{1}{2}$



# DROPOUT

**EXPLANATIONS** 

- Dropout can be perceived as averaging over several smaller networks, where averaging over several models is generally helpful to prevent overfitting
- Dropout can be perceived as projecting points in parameter space onto the linear subspace defined by only half of the elementary basis vectors.
- Combining optima in subspaces yields a selection of parameters that are not optimal, but nearby an optimum
   experience shows that this prevents overfitting
- Dropout prevents "co-adaptation of neurons"



# L1/2 REGULARIZATION, DROPOUT, EARLY STOPPING TAKE-HOME MESSAGE

#### Try to find a reasonable point near the very optimum

- L1/2 regularization: shrink or eliminate weights that don't change much
- *Dropout*: Randomly project points to linear subspaces, and optimize there, and then average out
- *Early stopping*: Stop before reaching the optimum



#### ARTIFICIAL EXPANSION OF TRAINING DATA



#### More training data improves test accuracy



#### ARTIFICIAL EXPANSION OF TRAINING DATA



NN versus SVM on same training data

- Sometimes better training data delivers substantial improvements
- Always good to aim for methodical improvements, but:

Don't miss "easy wins" by generating more and/or better training data UNIVERSITÄT BELEFELD

#### GENERATING ARTIFICIAL TRAINING DATA



Rotating 5 by 15 degrees to the left yields new training datum

Other Techniques

- ► Translating, skewing
- "Elastic distortions"
- For more details, see [Simard, Steinkraus & Platt, 2003] https://ieeexplore.ieee.org/document/1227801

### LECTURE3: SUMMARY

- Backpropagation: See http://www.deeplearningbook.org/6.5 and http://neuralnetworksanddeeplearning.com/, Chapter 2, until and including "The Backpropagation Algorithm"
- Regularization: See http://www.deeplearningbook.org/ Chapter 7, (for example 7.1, 7.8, 7.12) and http://neuralnetworksanddeeplearning.com/, Chapter 3
- ► For *further reading*, also consider:
- Read "In what sense is backpropagation a fast algorithm?" in Nielsen's book, chapter 2 (http://neuralnetworksanddeeplearning.com/chap2.html),
- ▶ Read "Backpropagation: the big picture" in Nielsen's book, chapter 2
- and try to make sense of what you have read.



# Outlook

- Convolutional Neural Networks
- http://www.deeplearningbook.org/, Chapter 9
- http://neuralnetworksanddeeplearning.com/, "Deep Learning"



Thanks for your attention

