
Biological Applications of Deep Learning
Lecture 3

Alexander Schönhuth

Bielefeld University
October 26, 2022

CONTENTS TODAY

I Gradient Descent: Reminder

I The Backpropagation Algorithm

I Regularization in detail:
I L1 / L2 Regularization
I Dropout / Early Stopping

Reminder: Gradient Descent for Neural Networks

GRADIENT DESCENT

I Let C(v1, ..., vn) be a differentiable function in n variables, here n = 2.
We look for the minimum of C.

I Idea: At point v1, v2 (green ball), move into direction of steepest decline
(green arrow). Do this iteratively.

I The steepest decline is given by the gradient

∇v1,...,vn C = (
∂C
∂v1

, ...,
∂C
∂vn

)

GRADIENT DESCENT FOR NEURAL NETWORKS
PRACTICAL SCHEME

Input

I A NN of depth L where parameters w represent both
I weights W(j) ∈ Rd(l)×d(l−1), j = 1, ..., L
I biases bj, j = 1, ..., L

I Let w0 be appropriately chosen initial parameters
I Let X(train) ∈ Rm×n, y(train) ∈ Rm be m training data points x ∈ Rn

I Let
C =

1
m

∑
x

Cx =
1
m

∑
x

C(fw(x), y(x))

be a cost function.
I One can view C = C(w) as a function in the parameters w.

GRADIENT DESCENT FOR NEURAL NETWORKS
PRACTICAL SCHEME

I Let η be an appropriately chosen learning rate.

Iteration i

1. Compute∇wC(wi−1)

I Need training data to update C, based on having updated w

2. Update: w(i) ← w(i−1) + η∇wC

I w(i)
k ← w(i−1)

k − η ∂C
∂wk

I b(i)
l ← b(i−1)

l − η ∂C
∂bl

3. Stop, if appropriate

This minimizes the cost C, hence adjusts the NN to the training data.

DEEP LEARNING: CHALLENGES

I The function f representing a neural network with L layers
(with depth L) are written

y = f (x0) = f (L)(f (L−1)(...(f (1)(x(0)))...))

where xl = f (l)(xl−1) = al(W(l)xl−1 + bl)

I + Functions fw representing NN’s cannot be described in
closed form

I Hence the loss C(w) := C(fw) := C(fw, f ∗) cannot be
described in closed form either

How to compute gradients and perform gradient descent?

Computing Gradients: The Backpropagation Algorithm

NOTATION

I weight wl
jk links node k in layer l− 1 with node j in layer l

I wl
jk = W(l)

jk in the earlier notation

I Reminder: width of layer l: d(l), so W(l) ∈ Rd(l)×d(l−1)

NOTATION

I bl
j is the bias of neuron j in layer l

I al
j is the activation value of neuron j in layer l

I bl
j = b(l)

j , a
l
j = x(l)j , a

l = x(l) in earlier notation

NOTATION

Using a sigmoid function σ as activation function, we obtain

al
j = σ(

∑
k

wl
jkal−1

k + bl
j) (1)

which can further be written

al = σ(W(l)al−1 + bl) (2)

Remark: here and in the following, σ can be replaced by an arbitrary activation
function that is differentiable.

We further define

zl
j =

∑
k

wl
jkal−1

k + bl
j that is al

j = σ(zl
j) (3)

such that

zl := (zl
1, ..., z

l
d(l))

T = W(l)al−1 + bl that is al = σ(zl) (4)

NOTATION

We further write
I y(x) for the label of a training data point x
I Note: y(x) can be identified with f ∗(x) where f ∗ is the true

function
I aL(x), the output of the last layer, represents the network

function, so aL(x) = f (x) in earlier notation.

BACKPROPAGATION

Goal
I We would like to compute gradient∇W,bC
I Therefore, we need to compute all partial derivatives

∂C
∂wl

jk
and

∂C
∂bl

j
(5)

I For further convenience, we define

δl
j :=

∂C
∂zl

j
(6)

BACKPROPAGATION

I For further convenience, we define

δl
j :=

∂C
∂zl

j

I For example, by the chain rule of differentiation (†):

∂C
∂bl

j

(†)
= δl

j
∂zl

j

∂bl
j
= δl

j
∂(

∑
k wl

jkal−1
k +bl

j)

∂bl
j

= δl
j

∂C
∂wl

jk∗

(†)
= δl

j
∂zl

j

∂wl
jk∗

= δl
j
∂(

∑
k wl

jkal−1
k +bl

j)

∂wl
jk∗

= δl
Ja

l−1
k∗

(7)

I Idea: Focus on computing δl
j , derive ∂C

∂bl
j

and ∂C
∂wl

jk
by (7)

NOTATION

I Let m be the total number of training examples. Then we
define C

C(f , f ∗) = C(aL) :=
1

2m

∑
x

||y(x)− aL(x)||2 (8)

as quadratic cost function (only for easier presentation!)
I Note: y resp. f ∗(x) are fixed, so C varies in aL (= f) only.
I Important: C = 1

m
∑

x Cx where Cx = 1
2 ||y(x)− aL(x)||2 is the

cost on one individual training example
I Idea: Compute δCx

δw ,
δCx
δb for all training data x and recover

δC
δw ,

δC
δb by averaging over x

DEFINITION
THE HADAMARD PRODUCT

Definition
Let s, t ∈ Rn be two vectors of equal length. Then the Hadamard
product s� t is defined by

(s� t)j = sj · tj for j = 1, ...,n (9)

BACKPROPAGATION
START: OUTPUT LAYER – COMPUTING δL

We have aL
j = σ(zL

j), so

δL
j =

∂C
∂zL

j
=

∑
k

∂C
∂aL

k

∂aL
k

∂zL
j

∂aL
k

∂zL
j
=0,j6=k

=
∂C
∂aL

j
· σ′(zL

j) (10)

In other words,
δL = ∇aLC� σ′(zL) (11)

BACKPROPAGATION
START: OUTPUT LAYER – COMPUTING δL

Further
σ′(z) = σ(z)(1− σ(z))

and
∂C
∂aL

j
=
∂(1

2
∑

j′(yj′ − aL
j′)

2)

∂aL
j

= (aL
j − yj),

so overall
δL

j = (aL
j − yj)σ(zL

j)(1− σ(zL
j)) (12)

BACKPROPAGATION
START: OUTPUT LAYER – COMPUTING δL

δL
j = (aL

j − yj)σ
′(zL

j) that is δL = (aL − y)� σ′(zL) (13)

Interpretation

I aL
j − yj determines how far off aL

j from yj is
I The further off, the steeper the gradient, the greater the

adjustment
I σ′(zL

j) is close to zero if σ(zL
j) is either close to zero or close

to one
I This can make sense, but can cause problems, because

updates get very small (note remarks on alternative
activation functions)

EXAMPLE
MNIST NETWORK

I Truth: One yj is one, all others are zero

I If aL
j is not one, updates are large: we need to make changes

I If aL
j is close to one, and all others are close to zero, updates are

small: no further adjustments necessary

PROPAGATION – COMPUTING δl FROM δl+1

We compute

δl
j =

∂C
∂zl

j
=

∑
k

∂C
∂zl+1

k

∂zl+1
k

∂zl
j

=
∑

k

∂zl+1
k

∂zl
j
δl+1

k (14)

We further observe

zl+1
k =

∑
j

wl+1
kj al

j + bl+1
k =

∑
j

wl+1
kj σ(zl

j) + bl+1
k (15)

which, by differentiation, leads to

∂zl+1
k

∂zl
j

= wl+1
kj σ′(zl

j) (16)

BACKPROPAGATION
PROPAGATION – COMPUTING δl FROM δl+1

Substituting (16) into (14), we obtain

δl
j =

∑
k

wl+1
kj δl+1

k σ′(zl
j) (17)

which can be overall expressed as

δl = ((W(l+1))Tδl+1)� σ′(zl) (18)

I (18) “moves the error one layer backward” + backpropagation

I Applying W(l+1) to δl+1 moves the error from the input of
neurons in layer l + 1 to the outputs of neurons in layer l

I σ′(zl) moves the error from the output of neurons in layer l to
the inputs of neurons in layer l

BACKPROPAGATION
COMPUTING ∂C

∂bl
j

AND ∂C
∂wl

jk

We further see that
∂C
∂bl

j
= δl

j (19)

and
∂C
∂wl

jk
= al−1

k δl
j (20)

(20) explains that changes in weights are small if the input is small, or
the error in the output is small:

BACKPROPAGATION
THE EQUATIONS

BACKPROPAGATION
THE ALGORITHM

BACKPROPAGATION
STOCHASTIC GRADIENT DESCENT

Employing Regularization

REGULARIZATION REVISITED
MOTIVATION

No regularization leads to overfitting

L2-REGULARIZED CROSS ENTROPY

We add a L2 regularization term to the cost (here:
cross-entropy). Thereby λ is the regularization parameter.

C = − 1
m

∑
x

∑
j

[yj log aL
j +(1− yj) log(1− aL

j)] +
λ

2m

∑
w

w2 (21)

Writing C0 = − 1
m
∑

x
∑

j[yj log aL
j + (1− yj) log(1− aL

j)] then
makes

C = C0 +
λ

m

∑
w

w2 (22)

Remark: This can be done with any cost function C0.

L2-REGULARIZED CROSS ENTROPY
This further yields the partial derivatives

∂C
∂w

=
∂C0

∂w
+
λ

m
w (23)

∂C
∂b

=
∂C0

∂b
(24)

with update rules (rescaling weights with (1− ηλ
m) is called weight decay)

b← b− η ∂C0

∂b
(25)

w← w− η ∂C0

∂w
− η λ

m
w = (1− ηλ

m
)w− η ∂C0

∂w
(26)

Update rules for stochastic gradient descent, for overall m training data, batch
size m̂:

b← b− η

m̂

∑
x

∂Cx

∂b
(27)

w← (1− ηλ

m
)w− η

m̂

∑
x

∂Cx

∂w
(28)

L2 REGULARIZATION
EXPLANATIONS

I For sake of better illustration, consider

I C0 to be a quadratic cost function, like mean squared loss
I In general, one can consider the quadratic (second order

term) approximation of C0
I only one training example, that is m = 1 in the following

I Let
w∗ := argmin

w
C0(w) (29)

be the true minimum (which we don’t know).

I Let k be the length of w (so k the number of weights to be
trained)

L2 REGULARIZATION
EXPLANATIONS

I Let the Hessian matrix H ∈ Rk×k be defined by

Hww′ =
∂C0

∂w∂w′
(30)

I The gradient of C0 vanishes at w∗, because w∗ is the minimum.

I By Taylor’s approximation, because C0 is quadratic, we know
that

C0(w) = C0(w∗) +
1
2
(w−w∗)TH(w−w∗) (31)

I That means that the minimum of C0 appears where

∇wC0(w) = H(w−w∗) = 0 (32)

L2 REGULARIZATION
EXPLANATIONS

I Let w̃ be the minimum of C = C0 +
1
2 ||w||

2

I Recalling ∂C
∂w = ∂C0

∂w + λw (see (23) with m = 1), we know that

H(w̃−w∗) + λw̃ = 0 (33)

I This further leads to (I is the identity)

w̃ = (H + λI)−1Hw∗ (34)

I For λ→ 0, we get w̃→ w∗

L2 REGULARIZATION
EXPLANATIONS

I Let D be diagonal where entries Dii are the eigenvalues of H

I Let Q collect the eigenvectors of H

I Since H is real and symmetric, Q is orthogonal, and H can be
written

H = QDQT (35)

I Substituting (35) in (34), we obtain

w̃ = (QDQT + λI)−1QDQTw∗ (36)

I further yielding

w̃ = Q(D + λI)−1DQTw∗ (37)

L2 REGULARIZATION
EXPLANATIONS

I Interpretation:
I w̃ is a rescaled version of w∗
I The component of w∗ that aligns with the i-th eigenvector

of H is rescaled by a factor of

Dii

Dii + λ
(38)

I Eigenvectors of H referring to large eigenvalues indicate
directions where the gradient rapidly changes (increases when
going away from w∗, where it is zero)

I Eigenvectors of H referring to small eigenvalues indicate
directions where the gradient hardly changes

I The latter directions can be neglected

I In other words, components of weights referring to such
directions can be decayed away by regularization

REGULARIZATION REVISITED
MOTIVATION

L2 regularization shrinks weights along eigenvectors of the Hessian

REGULARIZATION REVISITED
MOTIVATION

Regularization prevents overfitting

REGULARIZATION REVISITED
L1 REGULARIZATION

For L1 regularization, we modify the cost function

C = C0 +
λ

m

∑
w

|w| (39)

by adding the sum of the absolute values of the weights.

Gradient:
∂C
∂w

=
∂C0

∂w
+
λ

m
sgn(w) (40)

Update:

w← w′ = w− ηλ

m
sgn(w)− η∂C0

∂w
(41)

L1 REGULARIZATION
EXPLANATIONS

I L1 regularization does not have a similarly neat algebraic
explanation like L2 regularization

I An approximate explanation is that components referring to
small eigenvalues of the Hessian are set to zero, rather than
smoothly shrunken

I Overall, a sparse set of weights is achieved

REGULARIZATION REVISITED
L1 VERSUS L2 REGULARIZATION

I In L1 regularization, weights shrink by a constant amount.
I In L2 regularization, weights shrink by an amount

proportionally to w.
I L1 regularization tends to bring forward a small number of

high-importance connections.
I L2 regularization tends to keep all weights small.

REGULARIZATION REVISITED
DROPOUT

Full network, before dropout

REGULARIZATION REVISITED
DROPOUT

Network after having dropped half of the hidden nodes

REGULARIZATION REVISITED
DROPOUT

Procedure
1. Choose a mini batch of training data of size m̂
2. Randomly delete half of the hidden nodes, while keeping

all input and output nodes
3. Train the resulting network using the mini batch; update

all weights and biases
4. If validation accuracy not yet satisfying, return to 1.
5. After each epoch, decrease each weight by a factor of 1

2

DROPOUT
EXPLANATIONS

I Dropout can be perceived as averaging over several
smaller networks, where averaging over several models is
generally helpful to prevent overfitting

I Dropout can be perceived as projecting points in
parameter space onto the linear subspace defined by only
half of the elementary basis vectors.

I Combining optima in subspaces yields a selection of
parameters that are not optimal, but nearby an optimum
+ experience shows that this prevents overfitting

I Dropout prevents “co-adaptation of neurons”

L1/2 REGULARIZATION, DROPOUT, EARLY STOPPING
TAKE-HOME MESSAGE

Try to find a reasonable point near the very optimum
I L1/2 regularization: shrink or eliminate weights that don’t

change much
I Dropout: Randomly project points to linear subspaces, and

optimize there, and then average out
I Early stopping: Stop before reaching the optimum

REGULARIZATION REVISITED
ARTIFICIAL EXPANSION OF TRAINING DATA

More training data improves test accuracy

REGULARIZATION REVISITED
ARTIFICIAL EXPANSION OF TRAINING DATA

NN versus SVM on same training data

I Sometimes better training data delivers substantial improvements
I Always good to aim for methodical improvements, but:
I Don’t miss “easy wins” by generating more and/or better training data

REGULARIZATION REVISITED
GENERATING ARTIFICIAL TRAINING DATA

Rotating 5 by 15 degrees to the left yields new training datum

Other Techniques

I Translating, skewing

I “Elastic distortions”

I For more details, see [Simard, Steinkraus & Platt, 2003]
https://ieeexplore.ieee.org/document/1227801

https://ieeexplore.ieee.org/document/1227801

LECTURE3: SUMMARY

I Backpropagation: See http://www.deeplearningbook.org/ 6.5
and http://neuralnetworksanddeeplearning.com/, Chapter 2,
until and including “The Backpropagation Algorithm”

I Regularization: See http://www.deeplearningbook.org/
Chapter 7, (for example 7.1, 7.8, 7.12) and
http://neuralnetworksanddeeplearning.com/, Chapter 3

I For further reading, also consider:
I Read “In what sense is backpropagation a fast algorithm?” in Nielsen’s

book, chapter 2
(http://neuralnetworksanddeeplearning.com/chap2.html),

I Read “Backpropagation: the big picture” in Nielsen’s book, chapter 2
I and try to make sense of what you have read.

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/chap2.html

OUTLOOK

I Convolutional Neural Networks
I http://www.deeplearningbook.org/, Chapter 9
I http://neuralnetworksanddeeplearning.com/,

“Deep Learning”

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/

Thanks for your attention

