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I SVision
I Calling complex genetic variants in genomes
I Turn alignment patterns of long reads into RGB images

I ALSNet
I Predicting ALS disease status from genotype profiles
I Employ convolution on sequences directly



SVision

Reference
I J. Lin, [et al.], K. Ye

SVision: a deep learning approach to resolve complex structural variants
Nature Methods, 2022
∗
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Complex Structural Variants



SIMPLE STRUCTURAL VARIANTS

Simple deletion and alignment pattern

I Simple structural variants (SVs) involve one event

I Simple SVs characterized by
I Two breakpoints
I Specification of event (DEL, INV, INS)

I Alignment patterns unambiguous to interpret



COMPLEX STRUCTURAL VARIANTS (CSVS)

Deletion-inversion and alignment pattern

I CSVs involve more than one event

I CSVs characterized by
I More than two breakpoints
I Combination of event specifications (e.g. DEL+INV)

I Alignment patterns difficult to interpret



SVISION: CSV DISCOVERY

Complex structural variants: categories

I Motivation: CSV Discovery using long reads
I Long reads can span entire CSV locus

I Challenges:
I Signals of single variants interfere
I Signals ambiguous, various interpretations possible



CSVs to Images; Challenge



SVISION: IDEA & CHALLENGE

Idea

I DeepVariant “RGB” images do not work
I Great read length implies chaotic scenarios
I Every image looks different

+ Learning impossible

I Idea: Create meaningful image for every single read

Challenge:

I Length of long reads too variable

I DeepVariant images do not work for single reads either



SVISION: DOT PLOTS

Dot plot. X-axis: reference coordinates (RCs). Y-axis: Long read coordinates (LRCs).

I Dot plot patterns indicate different types of SVs
I Deletions: RCs not used in LRCs
I Duplications: RCs used twiced in LRCs
I Inversions: RCs used in reversed order in LRCs
I Repeats: LRCs used several times in RCs



SVISION: SOLUTION

Dot plot. X-axis: reference coordinates (RCs). Y-axis: Long read coordinates (LRCs).

Solution:

I Dot plot shows relative arrangement of sequence content

I Use dot plots to systematically dissect alignments
I Different parts reflect single elements of CSVs
I Upon identification, systematically combine single elements



SVision: Workflow



SVISION: WORKFLOW I

SVision: Workflow

Images

I Create dot plots from long read alignments

I “De-noise” dot plots

I Turn de-noised dot plots into RGB images



SVISION: WORKFLOW II

SVision: Workflow

Training / Prediction

I Every image reflects single element of CSV

I Predict single elements of CSV using trained CNN

I CNN: Off-the-shelf AlexNet



SVISION: WORKFLOW III

SVision: Workflow

CSV Graphs

I Arrange single elements into complex CSV

I Construct a graph for each single read

I Cluster graphs, and identify predominant CSV type



SVision: Creating Images



SVISION: IMAGE ENCODER I

SVision: Creating Images

CSV Candidate Loci
I Each long read has

I one primary alignment
I (usually) several supplementary alignments

I Candidate locus: Region spanned by aberrant primary alignment
I Read Collection: All reads that give rise to candidate locus



SVISION: IMAGE ENCODER II

SVision: Creating Images

Avoiding Artifical SV Elements: Long Read Re-Alignment

I Collect all unmatched sequence from primary CIGAR string
I Compare primary with secondary alignments, collect all gaps

I Re-align all unmatched sequence and gaps:
I Compute all k-mers in such sequence
I Compare k-mers with k-mers contained in reference (via hash table)
I Extend all matching k-mers into additional aligned sequence
I Result: Improved primary alignment with more matched sequence



SVISION: IMAGE ENCODER III

SVision: Creating Images

Determining Repeats: Pure K-Mer Based Alignment

I Determine k-mers from entire read
I Look up each k-mer in reference hash table

I Extend k-mers into longer matching sequence parts
I Such matching parts could be ambiguous
I Read sequence may match several positions in reference + Repeats!

I Important: Does not give rise to full read alignment



SVISION: IMAGE ENCODER IV

SVision: Creating Images

RGB Image Creation I

I Create dot plots from
I Improved primary alignment + re-alignment step eliminates artifacts
I K-mer based re-alignment of read + dot plot exhibits repeats

I Colors:
I First channel: All matched parts get (255,0,0) (blue)
I Second channel: All duplicated parts become (255,255,0) (cyan)
I Third channel: Inversions (255,0,255) (purple), if duplicated: (255,255,255)
I Only 4 different colors (+ arguably alternative designs conceivable)



SVISION: IMAGES I

SVision image showing duplication
Note the blue, regularly matched segments



SVISION: IMAGES II

SVision image showing inversion
Note the blue, regularly matched segments



SVISION: IMAGES II

SVision image showing duplicated inversion
Note the blue, regularly matched segments



SVISION: IMAGE ENCODER V

SVision: Creating Images

RGB Image Creation II

I VAR-to-REF image: From dot plot of improved primary alignment
I REF-to-REF image: From dot plot of k-mer based re-alignment

I Denoised Image: Subtract REF-to-REF from VAR-to-REF image
I Removes disturbing repeats from VAR-to-REF image
I Appropriate re-scaling of images prior to subtraction required



SVISION: SUBTRACTING IMAGES

SVision: Subtracting images means removing repeat elements



SVision: Targeted Multi-Object Recognition (tMOR)



SVISION: TMOR I

SVision: Targeted multi-object recognition (tMOR)

One-Variant Images:

I Identify blue, major matching (BMM) segments in image
I One-variant image: Part bounded by two BMM segments
I Intuition: CSV involves more than two BMM segments

+ Two neighboring BMM segments indicate simple SV only



SVISION: IMAGES II

SVision one-variant image
Red arrows indicate major matching segments



SVISION: TMOR II

SVision: Targeted multi-object recognition (tMOR)

Segments of Interest (SOIs):

I Dissect one-variant images further into SOIs
I SOIs span two vertically or horizontally neighboring segments

I Admitted Combinations:
I One major and one minor segment
I Two major segments, if shifted relative to each other
I No SOI: Two minor segments, or two un-shifted major segments



SVISION: TMOR III

SVision: Targeted multi-object recognition (tMOR)

Machine Learning:

I Train neural network with SOI images of known SVs
I Predict simple SVs on providing SOI images

I Training Data:
I 75 000 annotated SOIs
I Half of training data from known human genomes (NA19204, HG00514)
I Other half reflect simulated SVs

I Output: Five simple SV types DEL, INS, INV, DUP, tDUP



SVISION: TMOR IV

SVision: Targeted multi-object recognition (tMOR)

Neural Network Particularities:
I Neural Network:

I Off-the-shelf AlexNet [Krizhevsky et al., 2012]
I As usual, employs ReLU activation and dropout
I Training: 10-fold cross-validation
I Stochastic gradient descent: Batch size 64
I Implementation: Tensorflow package



SVision: Constructing CSV Graphs



SVISION: CSV GRAPHS I

SVision: Constructing CSV graphs

CSV Graph Definition

I One graph for each read

I Nodes: Segments from one-variant images pertaining to one read
I Skeleton nodes: Major, regular segments in one-variant images
I Insertion nodes: Minor segments in one-variant images of unknown origin
I Duplication nodes: Minor segments in one-variant images of known origin

I Edges: Either
I Connect two nodes adjacent by reference position, or
I Connect two nodes where one reflects duplication of other
I Paths lay out complex CSV



SVISION: CSV GRAPHS II

SVision: Constructing CSV graphs

Clustering Graphs

I Collect all graphs referring to reads from identical locus
I Goal: Identifying isomorphic graphs + NP-hard problem

I Solution:
I Order nodes by reference coordinates + linear-time algorithm
I Identify isomorphic graphs, cluster them together
I In addition, cluster graphs of reversed (so symmetrical) topology

I CSV Prediction: Path of predominant graph cluster



SVision: Results



DEEP VARIANT: RESULTS

I Criterion: Discovered CSV class to match true CSV class
I Recall: Discovered true CSVs over true CSVs
I Precision: Disovered true CSVs over discovered CSVs
I Summary: SVision drastically outperforms all prior approaches



ALS-Net

Reference
I B. Yin, M. Balvert, R. van de Spek, B. Dutilh, S. Bohte, J. Veldink,

A. Schönhuth
Using the structure of genome data in the design of deep neural networks for
predicting amyotrophic lateral sclerosis from genotype
Bioinformatics, 2019



Introduction
—

Amyotrophic Lateral Sclerosis



AMYOTROPHIC LATERAL SCLEROSIS (ALS)

I “Motor Neuron Disease”
I Degenerates upper and lower motor

neurons + muscles weaken and shrink
I Prominent Patient:

Stephen Hawking
I Death occurs two to five years after first

symptoms (respiratory failure)
I Cumulative lifetime risk 1 in 300
I Point prevalence: 5 per 100 000

Very Poor Prognosis



ALS: WHY POOR PROGNOSIS?

I [Ryan et al., JAMA Neurology, 2019; van Rheenen et al., Nature
Genetics, 2021]

I Twin studies: heritability approximately 50%
I Additive (SNP based) heritability: 10%
I Heritability: follows statistical definition not shown here
I Sloppy interpretation: Fraction of genetic relative to environmental

contribution to disease
I Additive heritability: Variants adding up their effects

80% of heritability is still missing

I Explanation:
I Non-additive, so far insufficiently understood relationships among

genetic factors (epistasis), including rare variation establish ALS-related
phenotype

ALS has a complex genetic architecture



SUMMARY: WHY ALS?

I ALS has proven to be notoriously hard to classfiy
I On the one hand it is know to be inherited
I On the other hand, majority of heritability still missing
I ALS has an “involved genetic architecture”

I State-of-the-art, linear regression type approaches unable to
reveal association between genotypes and disease status

I Justifies approaches that can approximate non-additive
associations between genotype and disease



Genetic Architecture:
A Formal Description



INDIVIDUAL GENOTYPES

Represent individuals by their genotypes
I Vectors whose length is number of polymorphic sites, with entries

I 0 = homozygous for reference
I 1 = heterozygous
I 2 = homozygous for alternative



THE GENETIC ARCHITECTURE OF ALS
DEFINITION

Let X be all people, represented by their genotypes.

The genetic architecture fALS of ALS is a function

fALS : X −→ {0, 1}

where

f (x) =

{
1 x affected by ALS
0 otherwise



Machine Learning the Genetic Architecture



LEARNING THE GENETIC ARCHITECTURE

LetM is a class of ML compatible functions:

Approximate fALS by f ∗ALS ∈M

I using known examples

I cases: (x, fALS(x) = 1)
I controls: (x, fALS(x) = 0)

as training/validation data

I Goodness of f ∗ALS(x) is evaluated on previously unseen test data



First Question
Has this been tried before?



MACHINE LEARNING THE GENETIC ARCHITECTURE
TRIED BEFORE? – YES AND NO

Yes
I Genome-wide association studies (GWAS) try to approximate the

genetic architecture fALS by additive (linear) functions
f ∗ALS : X −→ {0, 1}

I Advantage: f ∗ALS easy to perceive

I However:
I f∗ALS only accounts for additive constellations

+ Only reveals 20% of discoverable heritability
I Linear/additive models are poor
I Complex, non-additive approximations needed

No
I Manual (GWAS type) conception of non-additive approximations has

proven to be notoriously challenging
I Genuine machine learning settings have never been tried



Second Question
Is there sufficient training data available?

Yes: Project MinE.



ALS GENOTYPE DATA: PROJECT MINE

I See www.projectmine.com (donate?)
I Target: sequencing 22 500 individuals, of which 15 000 cases

I Genotype data available from
I up to 23 000 ALS patients
I more than 80 000 controls

I At our disposal: Dutch cohort, 11525 individuals, of which
I 4411 cases ↔ examples (x, fALS(x) = 1)
I 7114 controls ↔ examples (x, fALS(x) = 0)

Sufficient (training) data for high-performance Machine Learning

www.projectmine.com


CHALLENGES

I Input size: Length of genotype string N
I N several millions
I Dimensionality of problem too large, too many parameters

to be learnt

I Convolving genotype vectors? Use of convolution tailored
towards image analysis



Feature Selection
—

Picking relevant variant sites from 5 million sites overall



FEATURE SELECTION I: REGULATORY REGIONS
GENETICS PRINCIPLE GUIDED FEATURE SELECTION

Regulatory Region Gene

I Regulatory regions responsible for controlling gene activation
status

I Majority of disease-associated variants sit in regulatory regions
[Maurano et al, Science, 2012]

I Consider only 64 variants from each of these (∼ 20 000) regions
I But: still more than 1 million sites remaining



CONVOLUTION ON GENOTYPES?
LAWS OF RECOMBINATION

Laws of Recombination
I Variants are passed on from ancestor to offspring as blocks, and

not in isolation

I Laws of recombination: the 64 variants picked for each
regulatory region usually contained in one block

I In other words: the 64 variants picked belong together + like
neighboring pixels

I Applying convolution to these 64 variants makes sense



PROMOTER-CNN
ARCHITECTURE

Layer type Description Output shape
Input (64, 1)
Convolution, BN and Act 1 × 1 filter, (64, 4)

4 output channels
Convolution, BN and Act 4 × 4 filter, (61, 32)

32 output channels
Reshape Flatten (1952, 1)
Dense, BN and Act (148, 1)
Dense, BN and Act (16, 1)
Output Softmax (2, 1)

I Input: Genotypes from promoter region↔ element of {0, 1, 2}64

I Output: 0 for ’No ALS’, 1 for ’ALS’



FEATURE SELECTION II: PROMOTER CNN
WORKFLOW

Promoter region pn

Promoter region pn−1

..
.

Promoter region p2

Promoter region p1

promoterCNN

promoterCNN

promoterCNN

promoterCNN

CV acc pn

CV acc pn−1

CV acc p2

CV acc p1

Select top eight
promoter regions

from each chromosome
ALSnet Classification

I Second Step: Evaluate promoter variant blocks using (5-layered)
’Promoter-CNN’ for being predictive of ALS

I Keep only 8 highest-scoring regions per chromsome; discard all
others

I Remaining sites: 512 per chromosome + Perfect!



FEATURE SELECTION PROTOCOL: ADVANTAGES

I Applying convolution sensible: By laws of recombination, variants
within promoter region inherited as haplotype block

I Interpretability: Reveal potentially relevant ALS genes

Feature selection addresses three key technical challenges

Left To Do

Construct deep CNN



Classification: ALS-Net



ALS-NET
RESHAPE FOR ONE CHROMOSOME

Interpretation: Each promoter makes a channel: “8x8-image” for each
participating chromosome



ALS-NET: ARCHITECTURE
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Depth: 24 hidden layers overall

I Block 1: 2 x conv. + batch norm. (BN), Block 2: 3 x conv.
I Reshape: [Howard et al., 2017]: yields 16× 16× 32 + convolution
I Block 3: 1 x separable convolution [Gao et al., 2018]

+ saves on parameters, 1 x conv., 2 x pooling
I Block 4: 2 x conv. + 1 x separable conv.
I Blue Arrows: Bypass layers if needed, see [ResNet, 2015]
I GAP: Global average pooling
I Dense: Fully connected layer
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I Dense: Fully connected layer



ALS-NET: ARCHITECTURE
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CHROMOSOMES 7, 9, 17 AND 22

Accuracy Precision Recall

Logistic Regression 73.9 75.9 69.9
Support Vector Machines 72.5 78.3 62.4
Random Forest 59.6 81.3 24.9
Ada-Boost 66.1 70.0 56.5
ALS-Net 76.9 71.1 90.8

I Recall: ALS-Net recovers substantially more cases
I Choice of chromosomes favors additive approaches

[Van Rheenen et al., Nat.Gen., 2016]
I All methods required (here: CNN-based) feature selection: without

feature selection no method runs on all 4 chromosomes
I Important finding: ALS-Net picks up less confounding variables (batch

effects) than Logistic Regression



OUTLOOK

I Capsule Networks
I Motivation
I Tutorial

I Disease Capsule
I Predicting ALS disease status using capsule networks
I Biological Interpretation



Thanks for your attention


