Graph Neural Networks in Big Data Analytics: Introduction III

Alexander Schönhuth

Bielefeld University November 3, 2022

CONTENTS TODAY

- ► Reminder: Simple Graph Neural Networks
- Reminder: Convolution
- Message Passing

Graph Neural Networks: Definition

GRAPH NEURAL NETWORKS: DEFINITION

DEFINITION [GRAPH NEURAL NETWORK]: A graph neural network (GNN) is an

- optimizable transformation on
- ▶ all attributes of the graph (nodes, eges, global) that
- preserves graph symmetries (permutation invariances)
- ► GNN's adopt a "graph-in, graph-out" architecture:
 - Graph loaded with information accepted as input
 - Embeddings are progressively transformed
 - Connectivity of input graph never changed

Simple Graph Neural Networks

SIMPLE GNN I

U_n, *V_n*, *E_n* reflect global, vertex, edge information. From https://distill.pub/2021/gnn-intro/

- Initial embeddings: U_0, V_0, E_0
- $U_n, V_n, E_n, n \ge 0$ iteratively updated to $U_{n+1}, V_{n+1}, E_{n+1} \dots$
- ... using multilayer perceptions (MLP's) $f_{U_n}, f_{V_n}, f_{E_n}$ until ...

 ... final layer is reached, where final embeddings are computed.
NIVERSITÄT IELEFELD

PREDICTIONS BY POOLING

From https://distill.pub/2021/gnn-intro/

- May not always be so simple. For example:
 - Would like to raise predictions about nodes
 - But only edge embeddings available
- ► Solution: Aggregate (adjacent) edge embeddings using pooling function

PREDICTIONS BY POOLING II

GNN: End-to-end predcition task From https://distill.pub/2021/gnn-intro/

- Classification layer comprises pooling as well, if necessary
- ► *Remark:* Classification model can be any differentiable model
 - Models other than MLP's conceivable

Reminder: Convolutional Neural Networks (CNNs)

LOCAL RECEPTIVE FIELDS

In a convolutional NN,

- Every node in the first hidden layer is connected to a rectangular subregion
- Here: subregion = square of 5x5=25 input neurons

Convolutional filter of size 5 x 5

Definition

The region in the input images to which a hidden neuron is connected is called the *local receptive field (LRF)* of the hidden neuron.

LOCAL RECEPTIVE FIELDS

input neurons

000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

first hidden layer

o												

input neurons

000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
0 00000 000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	

first hidden layer

CONVOLUTIONAL FILTERS

For generating one hidden layer, identical parameters, together defining one convolutional filter, are used

CONVOLUTIONAL FILTERS

Definition A *feature map* is a mapping associated with one convolutional filter.

- A complete convolutional layer consists of several hidden sublayers
- Each sublayer is defined by one feature map
- UNIVERSITÄ BIELEFELD

NEURAL NETWORKS

CONVOLUTION FILTERS

Pixel representation of filter

Visualization of a curve detector filter

Filter for recognizing a curve

NEURAL NETWORKS

CONVOLUTION FILTERS

Visualization of the filter on the image

NEURAL NETWORKS

CONVOLUTION FILTERS

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600 (A large number!)

CONVOLUTIONAL FILTERS REAL WORLD EXAMPLE

MNIST example, 20 different filters

- The darker the more positive, the whiter the more negative
- ► In reality, convolutional filters are hard to interpret
- Literature: M.D. Zeiler, R. Fergus, "Visualizing and Understanding Convolutional Networks", https://arxiv.org/abs/1311.2901

POOLING LAYERS

- In addition to convolutional layers, CNN's make use of pooling layers.
- Pooling layers generate *condensed feature maps*: it takes a rectangle of neurons, and summarizes their values into one value
- This generates a considerably smaller layer

POOLING LAYERS

hidden neurons (output from feature map)

 2×2 pooling

- Max pooling: Each L × L rectangle is mapped onto the maximum of its values
- ► *L2 pooling*: Each *L* × *L* rectangle is mapped to the rooted average of the squares of the values
- This overall yields a layer that is $L \times L$ times smaller
- UNIVERSITÄUsually L = 2 is used

CONVOLUTIONAL NEURAL NETWORKS Combining Convolutional and Pooling Layers

Convolutional layer followed by pooling layer

- Convolutional and pooling layers are used in combination
- Pooling layers usually follow convolutional layers
- ► Intuition:
 - ► The exact location of the occurrence of a feature is not important
 - Pooling helps to handle distortions and rotations

Message Passing

MESSAGE PASSING: MOTIVATION

- Simple GNN's so far presented
 - do not pool within the GNN layer
 - have learned embeddings unaware of graph connectivity
- ► *Goal:* Neighboring nodes and edges
 - exchange information
 - influence each other's updated embeddings
- ► *Solution:* Message passing

Message Passing: Protocol

- 1. Each node: gather all embeddings (= messages) of neighboring nodes
- 2. Aggregate all messages using an aggregation function
- 3. Pooled messages passed through update function (e.g. learned NN)

Message passing: Aggregating information from neighboring nodes From https://distill.pub/2021/gnn-intro/

Message Passing and Convolution I

Message passing as convolution on graphs From https://distill.pub/2021/gnn-intro/

- Message passing and convolution are similar in spirit
- Commonality: Process element's neighbors to update element
 - ► Graphs: Elements are nodes
 - Images: Elements are pixels

Message Passing and Convolution II

Message passing as convolution on graphs From https://distill.pub/2021/gnn-intro/

- Message passing and convolution are similar in spirit
- ► Difference:
 - *Graphs:* Number of neighbors varies per node
 - Images: Number of neighbors constant per pixel

POOLING WITHIN LAYERS I

Passing messages from edges to nodes within layer From https://distill.pub/2021/gnn-intro/

- ► Situation: Want node from edge information
- ► Solution:
 - Pool information of neighboring edges and transfer to node: $\rho_{E_n \to V_n}$
 - After first iteration: add node information, and transfer pooled information from nodes to edges: $\rho_{V_n \to E_n}$

POOLING WITHIN LAYERS II

Passing messages from edges to nodes within layer From https://distill.pub/2021/gnn-intro/

- ► *Issue*: Node and edge information may differ in size
- ► Solution: Linear map transforms node into edge information
- And vice versa. Other maps than linear maps conceivable

POOLING WITHIN LAYERS III

Message passing: different modes From https://distill.pub/2021/gnn-intro/

- ► *Left:* Learning edge information from node informatio
- ► *Right:* Learning node information from edge information

POOLING WITHIN LAYERS IV

Weave layer: learning node information from edges and learning edge information from nodes

From https://distill.pub/2021/gnn-intro/

- f_{V_n} processes node information from edge information and node itself
- f_{E_n} processes edge information from node information and edge itself

POOLING WITHIN LAYERS V

Global information: aggregate from nodes and edges From https://distill.pub/2021/gnn-intro/

- ▶ *Issue:* After *k* layers, nodes can reach *k*-neighborhoods at most
- Solution: Consider master node or global context vector
- Update global context vector by pooling node and/or edge information

POOLING WITHIN LAYERS VI

Node information from pooling node, edge and global information From https://distill.pub/2021/gnn-intro/

- Situation: Want node information based on all information
- ► *Issue*: Different informations differ in size
- ► *Solution:* Xondition node information *x* on other information *z*
- ► Use *conditioning function:* concatenation, linear etc.

Message Passing and Random Walks

- Let n := |V| be the number of nodes of a graph (V, E)
- Let $A \in \{0,1\}^{n \times n}$ be its adjacency matrix
- Let *m* be the length of node information vectors
- Let $X \in \mathbb{R}^{n \times m}$ be the node feature matrix
 - Rows in X are *m*-dimensional information vectors of nodes

Consider

$$B = AX$$

We obtain

$$B_{ij} = A_{i1}X_{1j} + \dots + A_{in}X_{nj} = \sum_{\substack{k=1\\A_{ik}>0}}^{n} A_{ik}X_{kj}$$

Message Passing and Random Walks

Consider

$$B = AX$$

We obtain

$$B_{ij} = A_{i1}X_{1j} + \dots + A_{in}X_{nj} = \sum_{k=1 \atop A_{ik} > 0}^{n} A_{ik}X_{kj}$$

Interpretation:

- Each row B_i reflects a new information vector for node v_i
- B_i again has dimension m
- Each B_{ij} is the aggregation of j-th entries of information vectors of neighbors of v_i

Note that $A_{ik} = 1$ if and only if v_i and v_k are neighbors

Message Passing and Random Walks

Consider

$$B = AX$$

We obtain

$$B_{ij} = A_{i1}X_{1j} + \dots + A_{in}X_{nj} = \sum_{k=1 \atop A_{ik} > 0}^{n} A_{ik}X_{kj}$$

Interpretation:

 Replacing A with A^K yields aggregation of information vectors of K-neighbors

■ $A_{ik}^{K} = 1$ iff (sic!) v_i and v_k can be connected by path of length *K*

- This relates to random walks on the graph
 - Recall the random walk mechanism for computing PageRank

Motivation:

When aggregating one would like to consider weighted sums

$$B_{ij} = w_{ij,1}A_{i1}X_{1j} + \dots + w_{ij,n}A_{in}X_{nj} = \sum_{k=1 \atop A_{ik} > 0}^{n} w_{ij,k}A_{ik}X_{kj}$$

Some neighbors are more important than others

Challenge: How to compute weights in permutation invariant way?

Solution:

► *Solution:* Base weights on pairs of nodes alone, so

$$w_{ij,k} = f(v_i, v_k)_j$$

where

depends on information of nodes v_i and v_j alone
Renumbering nodes does not matterr

Graph attention network: mechanism

From https://distill.pub/2021/gnn-intro/

► Attention Networks: Compute value from comparing key and query

- Original motivation: Compute strength of dependency between words in (or across) sentences
- Original application: Used in language translation for example

Graph attention network: mechanism

From https://distill.pub/2021/gnn-intro/

- ► Here: Compare information vectors of two nodes
 - One node is query, other node is key, weight is value
 - ► Example:

$$f(v_i, v_j) = \langle v_i, v_k \rangle$$

evaluates as scalar product of information vectors of v_i and v_k

Outlook

- ► Convolution on Graphs
- ► The Graph Laplacian
- Polynomial Filters

Thanks for your attention!

