Graph Neural Networks in Big Data Analytics: Introduction V

Alexander Schönhuth

Bielefeld University November 17, 2022

CONTENTS TODAY

- ► Reminder: Polynomial Filters
- ► Modern GNN's
- Global Convolution

Reminder: Polynomial Filters on Graphs

THE GRAPH LAPLACIAN: EXAMPLE

Input Graph G

Laplacian L of G

Zeros are not displayed. The Laplacian depends only on the graph structure. From https://distill.pub/2021/understanding-gnns/

POLYNOMIALS OF THE LAPLACIAN

One can build polynomials of the Laplacian of the form

$$p_w(L) = w_0 I_n + w_1 L + w_2 L^2 + \dots + w_d L^d = \sum_{i=0}^d w_i L^i$$
(1)

where I_n is the *n*-dimensional identity matrix.

Alternatively, each such polynomial can be represented by its *vector of coefficients*

$$w = [w_0, ..., w_d]$$
 (2)

Remark:

- ▶ $p_w(L)$ is an $n \times n$ -Matrix for each w, just like L
- The $p_w(L)$ represent the equivalent of filters in CNN's
- ► We will see why that is...

POLYNOMIALS OF THE LAPLACIAN II

• In the following, each node $v \in V$ stores information $x_v \in \mathbb{R}$

- For ease of presentation only
- Everything applies also for multi-dimensional vectors
- Stack real-valued features into vector $x \in \mathbb{R}^n$

Collecting node information into vector.

POLYNOMIAL FILTERS: DEFINITION

- In the following, each node $v \in V$ stores information $x_v \in \mathbb{R}$
 - ► For ease of presentation only
 - Everything applies also for multi-dimensional vectors
- Stack real-valued features into vector $x \in \mathbb{R}^n$
- ► *Convolution with a polynomial filter p*^{*w*} is then defined as

$$x' = p_w(L)x \tag{3}$$

that is, by applying the matrix $p_w(L) \in \mathbb{R}^{n \times n}$ to the vector $x \in \mathbb{R}^n$

POLYNOMIAL FILTERS: EXAMPLES

Examples:

• $w = [w_0, 0, ..., 0]$: $x' = p_w(L) = w_0 I_n x + 0 + ... + 0 = w_0 x$ • w = [0, 1, 0, ..., 0]: $x' = p_w(L) = Lx$

Let $\mathcal{N}(v)$ is the *neighborhood* of v, that is all nodes attached to v via an edge, so

$$x'_{v} = (Lx)_{v} = \sum_{u \in G} L_{vu} x_{u} = \sum_{u \in G} (D_{vu} - A_{vu}) x_{u} = D_{vv} x_{v} - \sum_{u \in \mathcal{N}(v)} x_{u}$$

 Interpretation: Features of v are combined with features of immediate neighbors regimes message passing

POLYNOMIAL FILTERS: POLYNOMIAL DEGREE

• Let dist(u, v) be the length of the shortest path between nodes $u, v \in V$

For example, $(u, v) \in E$ corresponds to dist(u, v) = 1

Basic calculations imply

dist
$$(u, v) > i$$
 implies $(L^i)_{uv} = (\underbrace{L \times ... \times L}_{i \text{ times}})_{uv} = 0$ (4)

• Let $p_w(L)$ have polynomial degree *d*. One obtains

$$x'_{v} = (p_{w}(L)x)_{v} = \sum_{i=0}^{d} w_{i} \sum_{u \in V} (L^{i})_{vu} x_{u} = \sum_{i=0}^{d} w_{i} \sum_{\substack{u \in V \\ \operatorname{dist}_{G}(v,u) \leq i}} (L^{i})_{vu} x_{u}$$
(5)

▶ (5): convolution at node *v* only with nodes at most *d* hops away

Summary: Degree of localization governed by degree of polynomial filter

POLYNOMIAL FILTERS: STACKING LAYERS

Start with the original features.

 $h^{(0)} = x$

Then iterate, for $k=1,2,\ldots$ upto K:

 $p^{(k)}=p_{w^{(k)}}(L)$

 $h^{(k)} = \sigma\left(g^{(k)}
ight)$

$$g^{(k)}=p^{(k)} imes oldsymbol{h}^{(k-1)}$$

Color Codes:

- Computed node embeddings.
- Learnable parameters.

Compute the matrix $p^{(k)}$ as the polynomial defined by the filter weights $w^{(k)}$ evaluated at L.

Multiply $p^{(k)}$ with $h^{(k-1)}$: a standard matrix-vector multiply operation.

Apply a non-linearity σ to $g^{(k)}$ to get $h^{(k)}$.

Note: weights re-used at every node, as in CNN's. From https://distill.pub/2021/understanding-gnns/

Modern GNN's

MODERN GNN'S

• Re-consider $p_w(L) = L$, yielding

$$(Lx)_v = D_v x_v - \sum_{u \in \mathcal{N}(v)} x_u \tag{6}$$

► (6) decomposes into

- Aggregating over immediate neighbor features $x_u, u \in \mathcal{N}(v)$
- Combining with node v's own feature x_v
- Idea: Generalize by considering different kinds of aggregation and combination steps
- Caveat: Aggregation needs to be node-order invariant
- Iteratively repeating 1-hop localized convolutions K times: receptive field including all nodes up to K hops away

GRAPH CONVOLUTIONAL NETWORKS (GCN'S)

For k = 1, ..., K

$$h_{v}^{(k)} = f^{(k)} \begin{pmatrix} W^{(k)} \cdot \frac{\sum\limits_{u \in \mathcal{N}(v)} h_{u}^{(k-1)}}{|\mathcal{N}(v)|} + B^{(k)} \cdot h_{v}^{(k-1)} \end{pmatrix} \text{ for all } v \in V.$$
Node v's Mean of v's Node v's embedding at step k. The set of the se

Embedding of node v.

Embedding of a neighbour of node v.

(Potentially) Learnable parameters.

GRAPH CONVOLUTIONAL NETWORKS (GCN'S) I

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_v^{(k)} &=& f^{(k)} \left(W^{(k)} \cdot rac{u \in \mathcal{N}(v)}{|\mathcal{N}(v)|} + B^{(k)} \cdot eta_v^{(k-1)}
ight) \end{aligned} ext{ for all } v \in V. \end{aligned}$$

- Derive predictions from $h_v^{(K)}$
- ► Function *f*^(k), matrices *W*^(k), *B*^(k) shared across nodes
- ► Dividing by |N(v)| implements normalization; alternative normalization schemes conceivable

GRAPH ATTENTION NETWORKS (GAN'S)

$$\begin{split} h_v^{(k)} &= f^{(k)} \left(W^{(k)} \cdot \left[\sum_{u \in \mathcal{N}(v)} \alpha_{vu}^{(k-1)} h_u^{(k-1)} + \alpha_{vv}^{(k-1)} h_v^{(k-1)} \right] \right) & \text{ for all } v \in V. \end{split}$$

for k = 1, ..., K, where normalized attention weights $\alpha^{(k)}$ are generated by $A^{(k)}$

$$\begin{split} \alpha_{vu}^{(k)} &= \frac{A^{(k)}(h_v^{(k)}, h_u^{(k)})}{\sum\limits_{w \in \mathcal{N}(v)} A^{(k)}(h_v^{(k)}, h_w^{(k)})} & \text{for all } (v, u) \in E. \end{split}$$
Color Codes:
Embedding of node v.
Embedding of a neighbour of node v.
(Potentially) Learnable parameters.

GRAPH ATTENTION NETWORKS (GAN'S) II

$$\boldsymbol{h}_v^{(k)} \qquad = \quad \boldsymbol{f}^{(k)} \left(W^{(k)} \cdot \left[\sum_{u \in \mathcal{N}(v)} \alpha_{vu}^{(k-1)} h_u^{(k-1)} + \alpha_{vv}^{(k-1)} \boldsymbol{h}_v^{(k-1)} \right] \right) \qquad \text{for all } v \in V.$$

• Derive predictions from
$$h_v^{(K)}$$

- Function f^(k), matrices W^(k) and attention mechanism A^(k) (generally another neural network) shared across nodes
- ► Here: single-headed attention; multi-headed attention similar

References

- ChebNet: https://proceedings.neurips.cc/paper/2016/ file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
- Graph Convolutional Networks (GCN's): https://openreview.net/forum?id=SJU4ayYgl
- Graph Attention Networks (GAN's): https://openreview.net/forum?id=rJXMpikCZ

Global Convolutions

GLOBAL CONVOLUTION: MOTIVATION

As before, for sake of clarity, let feature vectors *x* be one-dimensional. *Question:*

- Let $x \in \mathbb{R}^{|V|}$ be a feature vector: how smooth is *x* w.r.t. *G*?
- In other words: how similar are features x_i, x_j within x for edges (i, j)?

Hint:

- Normalize *x* such that $\sum_i x_i^2 = 1$
- Consider the Laplacian based quantity

$$R_L(x) = \frac{x^T L x}{x^T x} = \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_i x_i^2} = \sum_{(i,j) \in E} (x_i - x_j)^2$$
(7)

• Similar values for neighboring nodes imply small $R_L(x)$

GLOBAL CONVOLUTION: MOTIVATION II

$$R_L(x) = \frac{x^T L x}{x^T x} = \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_i x_i^2} = \sum_{(i,j) \in E} (x_i - x_j)^2$$

Laplacian Eigenvectors:

- ► *L* is a real symmetric matrix \square All eigenvalues $\lambda_1 \leq ... \leq \lambda_n$ are real
- ▶ The corresponding eigenvectors *u*₁, ..., *u*_n can be taken *orthonormal*:

$$u_{k_1}^T u_{k_2} = \begin{cases} 1 & \text{if } k_1 = k_2 \\ 0 & \text{if } k_1 \neq k_2 \end{cases}$$
(8)

One can compute

 $\underset{x,x \perp \{u_1, \dots, u_{i-1}\}}{\arg\min} R_L(x) = u_i \quad \text{and} \quad \min_{x,x \perp \{u_1, \dots, u_{i-1}\}} R_L(x) = \lambda_i \quad (9)$

Set Eigenvectors $u_1, ..., u_n$ are successively less smooth

GLOBAL CONVOLUTION: MOTIVATION II

Global Convolution: Idea

- Let $u_1, ..., u_n$ be the (orthonormal) eigenvectors of L
- Intuition: According to (9), eigenvectors reflect weights on nodes determined such that information is most smooth with respect to the structure of the graph
- Goal: Exchange information between similar neighbors more than between different neighbors

GLOBAL CONVOLUTION: MOTIVATION III

Global Convolution: Idea

- ► Knowing about (9), base convolution on suitable representations of x over u₁,..., u_n
- In particular, according to (9), make preferable use of eigenvectors referring to small eigenvalues
- Global convolution: convolution acting on eigenvectors u_i virtually acts on all nodes simultaneously
- ► *Reminder:* local convolution only refers to neighborhoods of nodes

See Consider spectral convolutions as a suitable form of global convolution

SPECTRAL CONVOLUTIONS: FOUNDATION

- Let Λ := diag(λ₁,..., λ_n) be the diagonal matrix having λ₁ ≤ ... ≤ λ_n on the diagonal
- Let *U* be the matrix having columns $u_1, ..., u_n$ (in that order)
- One obtains

$$L = U\Lambda U^T$$

The *n* eigenvectors *u*₁, ..., *u_n* form a basis, so any feature vector *x* can be represented as a linear combination of the *u_i*

$$x = \sum_{i=1}^{n} \hat{x}_i u_i = U\hat{x}$$

where \hat{x} is the vector of coefficients

The orthonormality condition yields

$$x = U\hat{x} \quad \Leftrightarrow \quad U^T x = \hat{x}$$

SPECTRAL CONVOLUTIONS: PROTOCOL

► Compute *spectral represenation*

$$\hat{x} = U^T x =: [\hat{x}_1, \dots, \hat{x}_n]$$

• Truncate \hat{x} to first *m* components

$$\hat{x}[m] := [\hat{x}_1, ..., \hat{x}_m, 0, ..., 0]$$
 (10)

where $\hat{x}[m]$ can also be computed by

$$\hat{x}[m] = U_m^T x \quad \text{where} \quad (U_m)_{ij} = \begin{cases} U_{ij} & 1 \le j \le m \\ 0 & m > j \le n \end{cases}$$
(11)

 U_m is defined by turning the rightmost n - m columns in U to zero

• One can view $\lambda_1 \leq ... \leq \lambda_n$ as frequencies:

- Lower frequencies capture basic, globally applicable relationships
- Higher frequencies capture local details
- Omitting higher frequencies omits details, but keeps global structure

SPECTRAL CONVOLUTIONS: PROTOCOL II

$$\hat{x}[m] = U_m^T x$$
 where $(U_m)_{ij} = \begin{cases} U_{ij} & 1 \le j \le m \\ 0 & m > j \le n \end{cases}$

where U_m has rightmost n - m columns in U turned to zero

► This virtually turns the original *x* into

$$x[m] := U \cdot \hat{x}[m] = U \cdot U_m^T x = U_m \cdot U_m^T x$$

- ► *x*[*m*] can be considered an approximation of *x* that optimally caters to global convolution
- Because relying small eigenvalues (i.e. "small frequencies"):

x[m] still captures all essential structure of x

Approximation using first 20 eigenvectors

Approximation using first 50 eigenvectors

Approximation using first 100 eigenvectors

Approximation using first 200 eigenvectors

Approximation using first 500 eigenvectors

Approximation using first 1000 eigenvectors

Approximation using all 2000 eigenvectors

SPECTRAL CONVOLUTION GNN: PROTOCOL

- ► Consider a GNN having *K* layers
- ► Computing layer k + 1 from layer k, k = 0, ..., K 1, the GNN immplements spectral (global) convolution
- ► Let

$$[h_1^k, \dots, h_n^k]^T =: h^k$$

be the vector storing node information in layer *k* where

$$h^0 = x$$

is the original node information vector

SPECTRAL CONVOLUTION GNN: PROTOCOL

Start with the original features.

 $\hat{h}^{(k-1)} = U_m^T h^{(k-1)}$

 $q^{(k)} = U_m \hat{q}^{(k)}$

 $h^{(0)} = x$

Then iterate, for $k = 1, 2, \ldots$ upto K:

Color Codes:

Convert previous feature $h^{(k-1)}$ to its spectral representation $\hat{h}^{(k-1)}.$

 $\hat{g}^{(k)} = \hat{w}^{(k)} \odot \hat{h}^{(k-1)}$ Convolve with filter weig

Convolve with filter weights $\hat{w}^{(k)}$ in the spectral domain to get $\hat{g}^{(k)}.$ \odot represents element-wise multiplication.

Convert $\hat{g}^{(k)}$ back to its natural representation $g^{(k)}.$

 $h^{(k)} = \sigma\left(g^{(k)}
ight)$ Apply a non-linearity σ to $g^{(k)}$ to get $h^{(k)}$.

Pass in spectral GNN from layer k to layer k + 1Only m parameters required: $\hat{w}^{(k)}$ consists of only m weights From https://distill.pub/2021/understanding-gnns/

Thanks for your attention!

