
Graph Neural Networks in Big Data
Analytics: Introduction V

Alexander Schönhuth

Bielefeld University
November 17, 2022

CONTENTS TODAY

I Reminder: Polynomial Filters

I Modern GNN’s

I Global Convolution

Reminder: Polynomial Filters on Graphs

THE GRAPH LAPLACIAN: EXAMPLE

Zeros are not displayed. The Laplacian depends only on the graph structure.
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

POLYNOMIALS OF THE LAPLACIAN

One can build polynomials of the Laplacian of the form

pw(L) = w0In + w1L + w2L2 + ...+ wdLd =

d∑
i=0

wiLi (1)

where In is the n-dimensional identity matrix.
Alternatively, each such polynomial can be represented by its vector of
coefficients

w = [w0, ...,wd] (2)

Remark:

I pw(L) is an n× n-Matrix for each w, just like L

I The pw(L) represent the equivalent of filters in CNN’s

I We will see why that is...

POLYNOMIALS OF THE LAPLACIAN II

I In the following, each node v ∈ V stores information xv ∈ R
I For ease of presentation only
I Everything applies also for multi-dimensional vectors

I Stack real-valued features into vector x ∈ Rn

Collecting node information into vector.
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

POLYNOMIAL FILTERS: DEFINITION

I In the following, each node v ∈ V stores information xv ∈ R
I For ease of presentation only
I Everything applies also for multi-dimensional vectors

I Stack real-valued features into vector x ∈ Rn

I Convolution with a polynomial filter pw is then defined as

x′ = pw(L)x (3)

that is, by applying the matrix pw(L) ∈ Rn×n to the vector x ∈ Rn

POLYNOMIAL FILTERS: EXAMPLES

Examples:

I w = [w0, 0, ..., 0]:

x′ = pw(L) = w0Inx + 0 + ...+ 0 = w0x

I w = [0, 1, 0, ..., 0]:
x′ = pw(L) = Lx

LetN (v) is the neighborhood of v, that is all nodes attached to v via an
edge, so

x′
v = (Lx)v =

∑
u∈G

Lvuxu =
∑
u∈G

(Dvu − Avu)xu = Dvvxv −
∑

u∈N (v)

xu

I Interpretation: Features of v are combined with features of immediate
neighbors + message passing

POLYNOMIAL FILTERS: POLYNOMIAL DEGREE

I Let dist(u, v) be the length of the shortest path between nodes u, v ∈ V
I For example, (u, v) ∈ E corresponds to dist(u, v) = 1

I Basic calculations imply

dist(u, v) > i implies (Li)uv = (L× ...× L︸ ︷︷ ︸)uv

i times

= 0 (4)

I Let pw(L) have polynomial degree d. One obtains

x′
v = (pw(L)x)v =

d∑
i=0

wi

∑
u∈V

(Li)vuxu =

d∑
i=0

wi

∑
u∈V

distG(v,u)≤i

(Li)vuxu (5)

I (5): convolution at node v only with nodes at most d hops away

Summary: Degree of localization governed by degree of polynomial filter

POLYNOMIAL FILTERS: STACKING LAYERS

Note: weights re-used at every node, as in CNN’s.
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

Modern GNN’s

MODERN GNN’S

I Re-consider pw(L) = L, yielding

(Lx)v = Dvxv −
∑

u∈N (v)

xu (6)

I (6) decomposes into
I Aggregating over immediate neighbor features xu, u ∈ N (v)
I Combining with node v’s own feature xv

I Idea: Generalize by considering different kinds of aggregation
and combination steps

I Caveat: Aggregation needs to be node-order invariant

I Iteratively repeating 1-hop localized convolutions K times:
receptive field including all nodes up to K hops away

GRAPH CONVOLUTIONAL NETWORKS (GCN’S)

For k = 1, ...,K

From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

GRAPH CONVOLUTIONAL NETWORKS (GCN’S) I

From https://distill.pub/2021/understanding-gnns/

I Derive predictions from h(K)
v

I Function f (k), matrices W(k),B(k) shared across nodes

I Dividing by |N (v)| implements normalization; alternative
normalization schemes conceivable

https://distill.pub/2021/understanding-gnns/

GRAPH ATTENTION NETWORKS (GAN’S)

for k = 1, ...,K, where normalized attention weights α(k) are generated by A(k)

From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

GRAPH ATTENTION NETWORKS (GAN’S) II

From https://distill.pub/2021/understanding-gnns/

I Derive predictions from h(K)
v

I Function f (k), matrices W(k) and attention mechanism A(k)

(generally another neural network) shared across nodes

I Here: single-headed attention; multi-headed attention similar

https://distill.pub/2021/understanding-gnns/

REFERENCES

I ChebNet: https://proceedings.neurips.cc/paper/2016/
file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf

I Graph Convolutional Networks (GCN’s):
https://openreview.net/forum?id=SJU4ayYgl

I Graph Attention Networks (GAN’s):
https://openreview.net/forum?id=rJXMpikCZ

https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ

Global Convolutions

GLOBAL CONVOLUTION: MOTIVATION

As before, for sake of clarity, let feature vectors x be one-dimensional.

Question:

I Let x ∈ R|V| be a feature vector: how smooth is x w.r.t. G?
I In other words: how similar are features xi, xj within x for edges (i, j)?

Hint:
I Normalize x such that

∑
i x2

i = 1
I Consider the Laplacian based quantity

RL(x) =
xTLx
xTx

=

∑
(i,j)∈E(xi − xj)

2∑
i x2

i
=

∑
(i,j)∈E

(xi − xj)
2 (7)

I Similar values for neighboring nodes imply small RL(x)

GLOBAL CONVOLUTION: MOTIVATION II

RL(x) =
xTLx
xTx

=

∑
(i,j)∈E(xi − xj)

2∑
i x2

i
=

∑
(i,j)∈E

(xi − xj)
2

Laplacian Eigenvectors:

I L is a real symmetric matrix + All eigenvalues λ1 ≤ ... ≤ λn are real
I The corresponding eigenvectors u1, ..., un can be taken orthonormal:

uT
k1 uk2 =

{
1 if k1 = k2

0 if k1 6= k2
(8)

I One can compute

arg min
x,x⊥{u1,...,ui−1}

RL(x) = ui and min
x,x⊥{u1,...,ui−1}

RL(x) = λi (9)

+ Eigenvectors u1, ..., un are successively less smooth

GLOBAL CONVOLUTION: MOTIVATION II

Global Convolution: Idea
I Let u1, ..., un be the (orthonormal) eigenvectors of L
I Intuition: According to (9), eigenvectors reflect weights on nodes

determined such that information is most smooth with respect to the
structure of the graph

I Goal: Exchange information between similar neighbors more than
between different neighbors

GLOBAL CONVOLUTION: MOTIVATION III

Global Convolution: Idea
I Knowing about (9), base convolution on suitable representations of x

over u1, ..., un

I In particular, according to (9), make preferable use of eigenvectors
referring to small eigenvalues

I Global convolution: convolution acting on eigenvectors ui virtually acts
on all nodes simultaneously

I Reminder: local convolution only refers to neighborhoods of nodes

+ Consider spectral convolutions as a suitable form of global convolution

SPECTRAL CONVOLUTIONS: FOUNDATION

I Let Λ := diag(λ1, ..., λn) be the diagonal matrix having λ1 ≤ ... ≤ λn on
the diagonal

I Let U be the matrix having columns u1, ..., un (in that order)
I One obtains

L = UΛUT

I The n eigenvectors u1, ..., un form a basis, so any feature vector x can be
represented as a linear combination of the ui

x =

n∑
i=1

x̂iui = Ux̂

where x̂ is the vector of coefficients
I The orthonormality condition yields

x = Ux̂ ⇔ UTx = x̂

SPECTRAL CONVOLUTIONS: PROTOCOL

I Compute spectral represenation

x̂ = UTx =: [x̂1, ..., x̂n]

I Truncate x̂ to first m components

x̂[m] := [x̂1, ..., x̂m, 0, ..., 0] (10)

where x̂[m] can also be computed by

x̂[m] = UT
mx where (Um)ij =

{
Uij 1 ≤ j ≤ m
0 m > j ≤ n

(11)

Um is defined by turning the rightmost n−m columns in U to zero

I One can view λ1 ≤ ... ≤ λn as frequencies:
I Lower frequencies capture basic, globally applicable relationships
I Higher frequencies capture local details
I Omitting higher frequencies omits details, but keeps global structure

SPECTRAL CONVOLUTIONS: PROTOCOL II

x̂[m] = UT
mx where (Um)ij =

{
Uij 1 ≤ j ≤ m
0 m > j ≤ n

where Um has rightmost n−m columns in U turned to zero
I This virtually turns the original x into

x[m] := U · x̂[m] = U ·UT
mx = Um ·UT

mx

I x[m] can be considered an approximation of x that optimally caters to
global convolution

I Because relying small eigenvalues (i.e. ”small frequencies”):

x[m] still captures all essential structure of x

SPECTRAL REPRESENTATIONS: EXAMPLES

Approximation using first 20 eigenvectors
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

SPECTRAL REPRESENTATIONS: EXAMPLES

Approximation using first 50 eigenvectors
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

SPECTRAL REPRESENTATIONS: EXAMPLES

Approximation using first 100 eigenvectors
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

SPECTRAL REPRESENTATIONS: EXAMPLES

Approximation using first 200 eigenvectors
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

SPECTRAL REPRESENTATIONS: EXAMPLES

Approximation using first 500 eigenvectors
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

SPECTRAL REPRESENTATIONS: EXAMPLES

Approximation using first 1000 eigenvectors
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

SPECTRAL REPRESENTATIONS: EXAMPLES

Approximation using all 2000 eigenvectors
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

SPECTRAL CONVOLUTION GNN: PROTOCOL

I Consider a GNN having K layers

I Computing layer k + 1 from layer k, k = 0, ...,K − 1, the GNN
immplements spectral (global) convolution

I Let
[hk

1, ..., hk
n]

T =: hk

be the vector storing node information in layer k where

h0 = x

is the original node information vector

SPECTRAL CONVOLUTION GNN: PROTOCOL

Pass in spectral GNN from layer k to layer k + 1
Only m parameters required: ŵ(k) consists of only m weights

From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

Thanks for your attention!

