Graph Neural Networks in Big Data Analytics: Introduction V

Alexander Schönhuth

Bielefeld University
November 17, 2022

Contents Today

- Reminder: Polynomial Filters
- Modern GNN's
- Global Convolution

Reminder: Polynomial Filters on Graphs

The Graph Laplacian: Example

	A	B	c	D	E	F	G
A	[1	-1					
B	-1	2	-1				
C		-1	5	-1	-1	-1	
D			-1	1			
E			-1		1		
F			-1			1	
G			-1				$1]$

Input Graph G
Laplacian L of G
Zeros are not displayed. The Laplacian depends only on the graph structure. From https://distill.pub/2021/understanding-gnns/

POLYNOMIALS OF THE LAPLACIAN

One can build polynomials of the Laplacian of the form

$$
\begin{equation*}
p_{w}(L)=w_{0} I_{n}+w_{1} L+w_{2} L^{2}+\ldots+w_{d} L^{d}=\sum_{i=0}^{d} w_{i} L^{i} \tag{1}
\end{equation*}
$$

where I_{n} is the n-dimensional identity matrix.
Alternatively, each such polynomial can be represented by its vector of coefficients

$$
\begin{equation*}
w=\left[w_{0}, \ldots, w_{d}\right] \tag{2}
\end{equation*}
$$

Remark:

- $p_{w}(L)$ is an $n \times n$-Matrix for each w, just like L
- The $p_{w}(L)$ represent the equivalent of filters in CNN's
- We will see why that is...

Polynomials of the Laplacian II

- In the following, each node $v \in V$ stores information $x_{v} \in \mathbb{R}$
- For ease of presentation only
- Everything applies also for multi-dimensional vectors
- Stack real-valued features into vector $x \in \mathbb{R}^{n}$

Collecting node information into vector.
From https://distill.pub/2021/understanding-gnns/

Polynomial Filters: Definition

- In the following, each node $v \in V$ stores information $x_{v} \in \mathbb{R}$
- For ease of presentation only
- Everything applies also for multi-dimensional vectors
- Stack real-valued features into vector $x \in \mathbb{R}^{n}$
- Convolution with a polynomial filter p_{w} is then defined as

$$
\begin{equation*}
x^{\prime}=p_{w}(L) x \tag{3}
\end{equation*}
$$

that is, by applying the matrix $p_{w}(L) \in \mathbb{R}^{n \times n}$ to the vector $x \in \mathbb{R}^{n}$

Polynomial Filters: Examples

Examples:

- $w=\left[w_{0}, 0, \ldots, 0\right]:$

$$
x^{\prime}=p_{w}(L)=w_{0} I_{n} x+0+\ldots+0=w_{0} x
$$

- $w=[0,1,0, \ldots, 0]:$

$$
x^{\prime}=p_{w}(L)=L x
$$

Let $\mathcal{N}(v)$ is the neighborhood of v, that is all nodes attached to v via an edge, so

$$
x_{v}^{\prime}=(L x)_{v}=\sum_{u \in G} L_{v u} x_{u}=\sum_{u \in G}\left(D_{v u}-A_{v u}\right) x_{u}=D_{v v} x_{v}-\sum_{u \in \mathcal{N}(v)} x_{u}
$$

- Interpretation: Features of v are combined with features of immediate neighbors message passing

Polynomial Filters: Polynomial Degree

- Let $\operatorname{dist}(u, v)$ be the length of the shortest path between nodes $u, v \in V$
- For example, $(u, v) \in E$ corresponds to $\operatorname{dist}(u, v)=1$
- Basic calculations imply

$$
\begin{equation*}
\operatorname{dist}(u, v)>i \quad \text { implies } \quad\left(L^{i}\right)_{u v}=(\underbrace{L \times \ldots \times L}_{i \text { times }})_{u v}=0 \tag{4}
\end{equation*}
$$

- Let $p_{w}(L)$ have polynomial degree d. One obtains

$$
\begin{equation*}
x_{v}^{\prime}=\left(p_{w}(L) x\right)_{v}=\sum_{i=0}^{d} w_{i} \sum_{u \in V}\left(L^{i}\right)_{v u} x_{u}=\sum_{i=0}^{d} w_{i} \sum_{\substack{u \in V \\ \text { dist }_{G}(v, u) \leq i}}\left(L^{i}\right)_{v u} x_{u} \tag{5}
\end{equation*}
$$

- (5): convolution at node v only with nodes at most d hops away

Summary: Degree of localization governed by degree of polynomial filter

Polynomial Filters: Stacking Layers

$$
\begin{array}{ll}
p^{(k)}=p_{w^{(k)}}(L) & \begin{array}{l}
\text { Compute the matrix } p^{(k)} \text { as the polynomial } \\
\text { defined by the filter weights } w^{(k)} \text { evaluated at } L .
\end{array} \\
g^{(k)}=p^{(k)} \times h^{(k-1)} & \begin{array}{l}
\text { Multiply } p^{(k)} \text { with } h^{(k-1)} \text { : a standard matrix- } \\
\text { vector multiply operation. }
\end{array} \\
h^{(k)}=\sigma\left(g^{(k)}\right) & \text { Apply a non-linearity } \sigma \text { to } g^{(k)} \text { to get } h^{(k)}
\end{array}
$$

Start with the original features.

$$
h^{(0)}=x
$$

Then iterate, for $k=1,2, \ldots$ upto K :

Color Codes:Computed node embeddings.
\square Learnable parameters.

Note: weights re-used at every node, as in CNN's. From https://distill.pub/2021/understanding-gnns/

Modern GNN's

Modern GNN's

- Re-consider $p_{w}(L)=L$, yielding

$$
\begin{equation*}
(L x)_{v}=D_{v} x_{v}-\sum_{u \in \mathcal{N}(v)} x_{u} \tag{6}
\end{equation*}
$$

- (6) decomposes into
- Aggregating over immediate neighbor features $x_{u}, u \in \mathcal{N}(v)$
- Combining with node v 's own feature x_{v}
- Idea: Generalize by considering different kinds of aggregation and combination steps
- Caveat: Aggregation needs to be node-order invariant
- Iteratively repeating 1-hop localized convolutions K times: receptive field including all nodes up to K hops away

Graph Convolutional Networks (GCN's)

For $k=1, \ldots, K$
$h_{v}^{(k)} \quad=f^{(k)}\left(W^{(k)} \cdot \frac{\sum_{u \in \mathcal{N}(v)} h_{u}^{(k-1)}}{|\mathcal{N}(v)|}+B^{(k)} \cdot h_{v}^{(k-1)}\right) \quad$ for all $v \in V$.

Node v 's	Mean of \boldsymbol{v} 's	Node \boldsymbol{v} 's
embedding at	neighbour's	embedding at
step k.	embeddings at step $k-1$.	step $k-1$.

Color Codes:Embedding of node v.Embedding of a neighbour of node v.(Potentially) Learnable parameters.

From https://distill.pub/2021/understanding-gnns/

Graph Convolutional Networks (GCN's) I

$$
h_{v}^{(k)} \quad=f^{(k)}\left(W^{(k)} \cdot \frac{\sum_{u \in \mathcal{N}(v)} h_{u}^{(k-1)}}{|\mathcal{N}(v)|}+B^{(k)} \cdot h_{v}^{(k-1)}\right) \quad \text { for all } v \in V \text {. }
$$

From https://distill.pub/2021/understanding-gnns/

- Derive predictions from $h_{v}^{(K)}$
- Function $f^{(k)}$, matrices $W^{(k)}, B^{(k)}$ shared across nodes
- Dividing by $|\mathcal{N}(v)|$ implements normalization; alternative normalization schemes conceivable

Graph Attention Networks (GAN's)

$$
h_{v}^{(k)} \quad=f^{(k)}\left(W^{(k)} \cdot\left[\sum_{u \in \mathcal{N}(v)} \alpha_{v u}^{(k-1)} h_{u}^{(k-1)}+\alpha_{v v}^{(k-1)} h_{v}^{(k-1)}\right]\right) \quad \text { for all } v \in V
$$

Node v 's
embedding at step k.

Weighted mean of	Node v 's
v 's neighbour's	embedding at
embeddings at	step $k-1$.

for $k=1, \ldots, K$, where normalized attention weights $\alpha^{(k)}$ are generated by $A^{(k)}$

$$
\alpha_{v u}^{(k)} \quad=\frac{A^{(k)}\left(h_{v}^{(k)}, h_{u}^{(k)}\right)}{\sum_{w \in \mathcal{N}(v)} A^{(k)}\left(h_{v}^{(k)}, h_{w}^{(k)}\right)} \quad \quad \text { for all }(v, u) \in E
$$

Color Codes:
Embedding of node v.
Embedding of a neighbour of node v.
(Potentially) Learnable parameters.

From https://distill.pub/2021/understanding-gnns/

Graph Attention Networks (GAN's) II

$$
h_{v}^{(k)} \quad=f^{(k)}\left(W^{(k)} \cdot\left[\sum_{u \in \mathcal{N}(v)} \alpha_{v u}^{(k-1)} h_{u}^{(k-1)}+\alpha_{v v}^{(k-1)} h_{v}^{(k-1)}\right]\right) \quad \text { for all } v \in V \text {. }
$$

From https://distill.pub/2021/understanding-gnns/

- Derive predictions from $h_{v}^{(K)}$
- Function $f^{(k)}$, matrices $W^{(k)}$ and attention mechanism $A^{(k)}$ (generally another neural network) shared across nodes
- Here: single-headed attention; multi-headed attention similar

REFERENCES

- ChebNet: https://proceedings.neurips.cc/paper/2016/ file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
- Graph Convolutional Networks (GCN's):
https://openreview.net/forum?id=SJU4ayYgl
- Graph Attention Networks (GAN's):
https://openreview.net/forum?id=rJXMpikCZ

Global Convolutions

Global Convolution: Motivation

As before, for sake of clarity, let feature vectors x be one-dimensional.
Question:

- Let $x \in \mathbb{R}^{|V|}$ be a feature vector: how smooth is x w.r.t. G ?
- In other words: how similar are features x_{i}, x_{j} within x for edges (i, j) ?

Hint:

- Normalize x such that $\sum_{i} x_{i}^{2}=1$
- Consider the Laplacian based quantity

$$
\begin{equation*}
R_{L}(x)=\frac{x^{T} L x}{x^{T} x}=\frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} x_{i}^{2}}=\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \tag{7}
\end{equation*}
$$

- Similar values for neighboring nodes imply small $R_{L}(x)$

Global Convolution: Motivation II

$$
R_{L}(x)=\frac{x^{T} L x}{x^{T} x}=\frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} x_{i}^{2}}=\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
$$

Laplacian Eigenvectors:

- L is a real symmetric matrix All eigenvalues $\lambda_{1} \leq \ldots \leq \lambda_{n}$ are real
- The corresponding eigenvectors u_{1}, \ldots, u_{n} can be taken orthonormal:

$$
u_{k_{1}}^{T} u_{k_{2}}= \begin{cases}1 & \text { if } k_{1}=k_{2} \tag{8}\\ 0 & \text { if } k_{1} \neq k_{2}\end{cases}
$$

- One can compute

$$
\begin{equation*}
\underset{x, x \perp\left\{u_{1}, \ldots, u_{i-1}\right\}}{\arg \min } R_{L}(x)=u_{i} \quad \text { and } \quad \min _{x, x \perp\left\{u_{1}, \ldots, u_{i-1}\right\}} R_{L}(x)=\lambda_{i} \tag{9}
\end{equation*}
$$

Eigenvectors u_{1}, \ldots, u_{n} are successively less smooth

Global Convolution: Motivation II

Global Convolution: Idea

- Let u_{1}, \ldots, u_{n} be the (orthonormal) eigenvectors of L
- Intuition: According to (9), eigenvectors reflect weights on nodes determined such that information is most smooth with respect to the structure of the graph
- Goal: Exchange information between similar neighbors more than between different neighbors

Global Convolution: Motivation III

Global Convolution: Idea

- Knowing about (9), base convolution on suitable representations of x over u_{1}, \ldots, u_{n}
- In particular, according to (9), make preferable use of eigenvectors referring to small eigenvalues
- Global convolution: convolution acting on eigenvectors u_{i} virtually acts on all nodes simultaneously
- Reminder: local convolution only refers to neighborhoods of nodes

Consider spectral convolutions as a suitable form of global convolution

Spectral Convolutions: Foundation

- Let $\Lambda:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the diagonal matrix having $\lambda_{1} \leq \ldots \leq \lambda_{n}$ on the diagonal
- Let U be the matrix having columns u_{1}, \ldots, u_{n} (in that order)
- One obtains

$$
L=U \Lambda U^{T}
$$

- The n eigenvectors u_{1}, \ldots, u_{n} form a basis, so any feature vector x can be represented as a linear combination of the u_{i}

$$
x=\sum_{i=1}^{n} \hat{x}_{i} u_{i}=U \hat{x}
$$

where \hat{x} is the vector of coefficients

- The orthonormality condition yields

$$
x=U \hat{x} \quad \Leftrightarrow \quad U^{T} x=\hat{x}
$$

Spectral Convolutions: Protocol

- Compute spectral represenation

$$
\hat{x}=U^{T} x=:\left[\hat{x}_{1}, \ldots, \hat{x}_{n}\right]
$$

- Truncate \hat{x} to first m components

$$
\begin{equation*}
\hat{x}[m]:=\left[\hat{x}_{1}, \ldots, \hat{x}_{m}, 0, \ldots, 0\right] \tag{10}
\end{equation*}
$$

where $\hat{x}[m]$ can also be computed by

$$
\hat{x}[m]=U_{m}^{T} x \quad \text { where } \quad\left(U_{m}\right)_{i j}= \begin{cases}U_{i j} & 1 \leq j \leq m \tag{11}\\ 0 & m>j \leq n\end{cases}
$$

U_{m} is defined by turning the rightmost $n-m$ columns in U to zero

- One can view $\lambda_{1} \leq \ldots \leq \lambda_{n}$ as frequencies:
- Lower frequencies capture basic, globally applicable relationships
- Higher frequencies capture local details
- Omitting higher frequencies omits details, but keeps global structure

Spectral Convolutions: Protocol II

$$
\hat{x}[m]=U_{m}^{T} x \quad \text { where } \quad\left(U_{m}\right)_{i j}= \begin{cases}U_{i j} & 1 \leq j \leq m \\ 0 & m>j \leq n\end{cases}
$$

where U_{m} has rightmost $n-m$ columns in U turned to zero

- This virtually turns the original x into

$$
x[m]:=U \cdot \hat{x}[m]=U \cdot U_{m}^{T} x=U_{m} \cdot U_{m}^{T} x
$$

- $x[m]$ can be considered an approximation of x that optimally caters to global convolution
- Because relying small eigenvalues (i.e. "small frequencies"):
$x[m]$ still captures all essential structure of x

Spectral Representations: Examples

Original Image \boldsymbol{x}

Transformed Image x^{\prime}

Number of Spectral Components (m)

Approximation using first 20 eigenvectors
From https://distill.pub/2021/understanding-gnns/

Spectral Representations: Examples

Original Image x

Transformed Image x^{\prime}

Number of Spectral Components (m)

Approximation using first 50 eigenvectors
From https://distill.pub/2021/understanding-gnns/

Spectral Representations: Examples

Original Image x

Transformed Image x^{\prime}

Number of Spectral Components (m)

Approximation using first 100 eigenvectors
From https://distill.pub/2021/understanding-gnns/

Spectral Representations: Examples

Original Image x

Transformed Image x^{\prime}

Number of Spectral Components (m)
200

Approximation using first 200 eigenvectors
From https://distill.pub/2021/understanding-gnns/

Spectral Representations: Examples

Original Image x

Transformed Image x^{\prime}

Number of Spectral Components (m)
500

Approximation using first 500 eigenvectors
From https://distill.pub/2021/understanding-gnns/

Spectral Representations: Examples

Original Image x

Transformed Image x^{\prime}

Number of Spectral Components (m)
1000

Approximation using first 1000 eigenvectors
From https://distill.pub/2021/understanding-gnns/

Spectral Representations: Examples

Original Image x

Transformed Image x^{\prime}

Number of Spectral Components (m)

Approximation using all 2000 eigenvectors
From https://distill.pub/2021/understanding-gnns/

Spectral Convolution GNN: Protocol

- Consider a GNN having K layers
- Computing layer $k+1$ from layer $k, k=0, \ldots, K-1$, the GNN immplements spectral (global) convolution
- Let

$$
\left[h_{1}^{k}, \ldots, h_{n}^{k}\right]^{T}=: h^{k}
$$

be the vector storing node information in layer k where

$$
h^{0}=x
$$

is the original node information vector

Spectral Convolution GNN: Protocol

Start with the original features.

$$
h^{(0)}=x
$$

Then iterate, for $k=1,2, \ldots$ upto K :

$$
\begin{aligned}
& \hat{h}^{(k-1)}=U_{m}^{T} h^{(k-1)} \text { Convert previous feature } h^{(k-1)} \text { to its spectral representation } \hat{h}^{(k-1)} \\
& \hat{g}^{(k)}=\hat{w}^{(k)} \odot \hat{h}^{(k-1)} \begin{array}{l}
\text { Convolve with filter weights } \hat{w}^{(k)} \text { in the spectral domain to get } \hat{g}^{(k)} . \\
g^{(k)}=U_{m} \hat{\boldsymbol{g}}^{(k)}
\end{array} \\
& \begin{array}{ll}
\text { Cepresents element-wise multiplication. }
\end{array} \\
& h^{(k)}=\sigma\left(g^{(k)}\right) \text { Convert } \hat{g}^{(k)} \text { back to its natural representation } g^{(k)} .
\end{aligned}
$$

Color Codes:
Computed node embeddings.Learnable parameters.
. upto A :

Then toratork

Pass in spectral GNN from layer k to layer $k+1$ Only m parameters required: $\hat{w}^{(k)}$ consists of only m weights

From https://distill.pub/2021/understanding-gnns/

Thanks for your attention!

