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Graph Neural Networks: Motivation



Neural Networks



NEURONS
LINEAR + ACTIVATION FUNCTION

output = a(wT · x + b)

Note: replace f in Figure by a!

Neuron: linear function followed
by activation function

Examples

▶ Linear regression:

a = Id

a is identity function
▶ Perceptron:

a(x) =

{
1 x ≥ 0
0 x < 0

a is step function



NEURAL NETWORKS
CONCATENATING NEURONS



NEURAL NETWORKS
ARCHITECTURES (CHART FROM 2016)



DEEP NEURAL NETWORKS

Width = Number of nodes in a hidden layer
Depth = Number of hidden layers

Deep = depth ≥ 8 (for historical reasons)



NEURAL NETWORKS
FORMAL DEFINITION

▶ Let xl ∈ Rd(l) be all outputs from neurons in layer l, where d(l) is
the width of layer l.

▶ Let y ∈ V be the output.

▶ Let x =: x0 be the input.

▶ Then
xl = al(W(l)xl−1 + bl)

where al(.) = (al
1(.), ..., al

d(l)(.)), W(l) ∈ Rd(l)×d(l−1), bl ∈ Rd(l)

▶ The function f representing a neural network with L layers (with
depth L) can be written

y = f (x0) = f (L)(f (L−1)(...(f (1)(x(0)))...))

where xl = f (l)(xl−1) = al(W(l)xl−1 + bl)



TRAINING: BACKPROPAGATION

▶ E.g. let X be a set of images, labels 1 and 0: tree or not
▶ Let

f(w,b) : X → {0, 1} and f̂ : X → {0, 1}

be the network function (fw,b) and the true function (̂f )

▶ L(f(w,b), f̂ ) loss function, differentiable in network parameters w,b

▶ Back Propagation: Minimize L(f , f̂ ) through gradient descent

☞ Heavily parallelizable!
▶ Decisive: Ratio number of parameters and training data



Why Neural Networks?



WHY NEURAL NETWORKS?

Given an (unknown) functional relationship f : Rd → V, why
should we learn f by approximating it with a neural network?



Practical, Intuitive Consideration



DEEP LEARNING
INTUITIVE EXPLANATION

▶ Face recognition: decompose classification task into subtasks



DEEP LEARNING IS INTUITIVE

▶ Face recognition: decompose subtask (eye recognition) into
sub-subtasks

▶ Subtasks are composed into overall task “layer by layer”



RUNNING EXAMPLE: MNIST CLASSIFICATION
DATA, FUNCTION

f : R28×28=784 −→ {0, 1, ..., 9} (1)



RUNNING EXAMPLE
MODEL CLASS: NN WITH 1 HIDDEN LAYER



RUNNING EXAMPLE

together makes

Neurons of hidden layer recognize characterizing parts of digit



Theoretical Consideration



THE UNIVERSAL APPROXIMATION THEOREM

First version formulated by George Cybenko in 1989.

Theorem
A feedforward network with a single hidden layer containing a finite number
of neurons can approximate any nonconstant, bounded and continuous
function with arbitrary closeness, as long as there are enough hidden nodes.



Why Deep Learning?



RULE OF THUMB

One needs approximately

as many training data
as there are parameters

in the class of models



MORE LAYERS
MOTIVATION

▶ We save on neurons/parameters, while increasing number of
steps, by increasing depth!

If you are curious about a working example: watch Lecture 02 by
Prof. Schönhuth here https://gds.techfak.uni-bielefeld.

de/teaching/2022winter/bioadl

https://gds.techfak.uni-bielefeld.de/teaching/2022winter/bioadl
https://gds.techfak.uni-bielefeld.de/teaching/2022winter/bioadl


WHY DEEP LEARNING

▶ We need only O(n + 1) (and not O(2n)) parameters to
model a constellation with 2n steps and one symmetry axis

▶ Hence, we only need O(n + 1) training data, and not O(2n)
(like SVM or Nearest Neighbour)

▶ In general O(nl) (symmetric) steps need only O(nl)
training data

▶ This illustrates why deeper NNs can deal with symmetry
invariance in images



WHY DEEP LEARNING
Theorem (Universal Approximation; Montufar (2014))
Let f be an NN with d inputs, l hidden layers (depth l) of width n each. Then
the number of differently labeled regions is

O

((
n
d

)d(l−1)

nd

)
(2)

That is, the number of regions that can receive different labels is
exponential in the depth (the number of hidden layers) l.

[Montufar 2014]: Every neuron can fold space along an axis



DEEP LEARNING
ASSUMPTIONS

▶ Model classes make certain assumptions about properties
of the functions they aim to approximate

▶ Many model classes (such as Nearest Neighbors and
SVM’s) require local consistency and smoothness: nearby
points are likely to receive the same label

▶ Deep neural networks make further assumptions such as
invariance to shifts, rotations and mirroring



IMAGENET AND ILSVRC
DATASET AND FIRST RESULTS

ImageNet examples: “beading plane”, “brown root rot fungus”, “scalded milk”,
“common roundworm”

▶ ImageNet dataset: 16 million full color images; 20 000 categories
▶ Starting point: Le, Ranzato, Monga, Devin, Chen, Corrado, Dean & Ng:

“Building high-level features using large scale unsupervised learning”,
2012, https://ai.google/research/pubs/pub38115 achieved
15.3 % test accuracy

▶ ILSVRC: Image-Net Large-Scale Visual Recognition Challenge
▶ 2012: 1000 categories; Training 1.2 million images; Validation 50 000

images; Test 150 000 images

https://ai.google/research/pubs/pub38115


GOING DEEPER

https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_

networks_kaiminghe.pdf; Note: correct error rate for AlexNet is 15.4%

https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf


Graph Neural Networks: Introduction



Graphs



GRAPHS: INTRODUCTION

From https://mathinsight.org/network_introduction

https://mathinsight.org/network_introduction


DIRECTED GRAPH

From https://mathinsight.org/network_introduction

https://mathinsight.org/network_introduction


GRAPHS, ADJACENCY MATRIX: DEFINITION

DEFINITION [GRAPH]:
A graph G = (V,E) has vertices V and edges E ⊂ V × V. If G is directed, the
order (i, j) := (vi, vj) ∈ E matters (and edges are often referred to as arcs). If G
is undirected, (i, j) can be considered unordered, so (i, j) = (j, i).

DEFINITION [ADJACENCY MATRIX]:
Let G = (V,E) be a graph with vertices V and (directed) edges E. The
adjacency matrix A = (aij)1≤i,j≤|V| is defined by

aij =

{
1 if (i, j) ∈ E
0 otherwise

(3)

Remark: If G is undirected, aij = 1 implies aji = 1. Hence A is symmetric.



ADJACENCY MATRIX: EXAMPLE

DEFINITION [ADJACENCY MATRIX]:
Let G = (V,E) be a graph with vertices V and (directed) edges E. The
adjacency matrix A = (aij)1≤i,j≤|V| is defined by

aij =

{
1 if (i, j) ∈ E
0 otherwise

(4)

From https://mathinsight.org/network_introduction

https://mathinsight.org/network_introduction


Graphs: Storing Information



GRAPHS: STORING INFORMATION I

Graphs can store information in various ways

Vertex attributes
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: STORING INFORMATION II

Graphs can store information in various ways

Edge attributes
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: STORINGINFORMATION III

Graphs can store information in various ways

Global attributes
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: STORINGINFORMATION IV

Graphs can store information in various ways

Embeddings: vector-valued information
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


Graphs: Examples



GRAPHS: IMAGES

Graph and adjacency matrix of an image
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: TEXTS

Graph and adjacency matrix of a piece of text
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: SOCIAL NETWORKS

Graph and adjacency matrix displaying interactions in karate club
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: MOLECULES

Graph and adjacency matrix of a molecule
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


Graphs: Learning Tasks



GRAPH LEVEL TASKS

Structures in molecule graphs. Two rings (red) or not (black).
From https://distill.pub/2021/gnn-intro/

▶ Labels reflect statements about the entire graph.
▶ If unknown, determine using machine learning.

https://distill.pub/2021/gnn-intro/


NODE LEVEL TASKS

Karate club: Allegiance to either Mr. Hi (red) or John A. (gray)
From https://distill.pub/2021/gnn-intro/

▶ Labels reflect statements about individual nodes.
▶ Some may be known. Others not: determine using ML.

https://distill.pub/2021/gnn-intro/


EDGE LEVEL TASKS

Fight scene in image: elements (two fighters, arbiter, audience, mat).
Labels: relationships.

From https://distill.pub/2021/gnn-intro/

▶ Labels reflect statements about edges, so indicate relationships.
▶ Some relationships known. If not known: determine using ML.

https://distill.pub/2021/gnn-intro/


Graphs: Machine Learning Challenges



NEURAL NETWORKS AND GRAPHS

▶ Techniques for certain graphs available:

▶ Images = Grids: Convolutional neural networks
▶ Text = Sequences: Recurrent neural networks, attention

networks

▶ Techniques for arbitrary graphs desirable:

▶ Social networks: vary (heavily) by application
▶ Molecules: plenty of different structures
▶ Other applications: manifold interaction networks

▶ Motivation: Extend existing techniques to general graphs

▶ Issue: Get rid of regularity as a necessary condition



GENERAL GRAPHS: INPUT

▶ Neural networks usually expect well-arranged input:
▶ Rectangular, grid-like input
▶ Sequence type input
▶ Arrangement in terms of graph-type evaluation obvious

▶ Graphs may harbor four types of information:
▶ Node information
▶ Edge information
▶ Global information
▶ Connectivity

How to exploit them by appropriately arranging input?



CHALLENGE: REPRESENTING INPUT

Suitable way of storing graph information. Colors: different information.
From https://distill.pub/2021/gnn-intro/

▶ Nodes: node information
▶ Edges: edge information
▶ Global: global information
▶ Adjacency List: connectivity information

https://distill.pub/2021/gnn-intro/


CHALLENGE: PERMUTATION INVARIANCE

.
From https://distill.pub/2021/gnn-intro/

▶ Graphs are permutation invariant
▶ Goal: Exploit data in permutation invariant way

https://distill.pub/2021/gnn-intro/


Thanks for your attention!


