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Recap
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During our last lecture we talked about:

Computer architecture

Overview of Python

Anaconda, Qt Console & Jupyter

Pythons basics
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Recap



Arithmetic in Python
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Numeric types:

Integer: int 42
Real valued numbers: float 42.0
Complex numbers: complex 42+0j

Operators

Addition and subtraction + -
Multiplication and division * / // %
Exponentiation **



Variables

Programming (Data types, conditions & more): Recap 4

Variable assignment

a = 42
b = a - 6.0

type(�name of the variable�): returns type of variable



Libraries
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Importing libraries

import numpy as np
import matplotlib.pyplot as plt

import �name of the library�as �alias�: loads the requested
library under the alias’ name
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Data Types &

Mutability
Evaluation

Order

Conditions Comparisons
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Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types
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Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Instances of certain types are immutable , i.e., cannot be changed

after creation



Types, instances, variables
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We differentiate between type, instance, and variable!

1 a = list()
2 b = a
3 b.append(1)
4 b = 'this is a string'

Lines 1-3: Instance of type list is assigned to

variables a and b.
Line 4: Variable b refers now to a new string

instance



Memory address: id
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Every instance has a unique address in memory

id(x): memory address of instance of x
x,y reference the same instance if and only if x is equal to y.



Numeric types - immutable
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int(), float(), complex()

Instantiation: x = 42, x = 42.0 or x = 42+0j
Length: NO len() function
Access: NO access

Existence: NO existence

Frequency: NO frequency



Boolean - immutable
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bool()

Instantiation: val = True or val = False (capital)
Length: NO len() function
Access: NO access

Existence: NO existence

Frequency: NO frequency



String - immutable
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str()

Instantiation: s = 'a new string' or s = "a new string"
Length: len(s)
Access:

First: s[0]
Slice: s[1:3]
Last: s[-1]

Existence: 'n' in s or 'new'in s
Frequency: s.count('new')



Tuple - immutable
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tuple()

Instantiation: t = (1, 'two', 3.0)
Length: len(t)
Access:

First: t[0]
Slice: t[1:3]
Last: t[-1]

Existence: 'two'in t or 3 in t
Frequency: s.count(3.0)



List - mutable
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list()

Instantiation: l = [1, 2, 3]
Length: len(l)
Add elements: l.append("content")
Access:

first: l[0]
slice: l[1:3]
last: l[-1]

Existence: 2 in l
Location: l.index(3)



Dictionary - mutable
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dict()

Instantiation: d = dict(), d = {'x': 1, 'y': 2 }, ...
Length: len(d)
Add elements: d['a'] = 'four'
Access: d['a']
Existence: 'a' in d



Set - mutable
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str()

instantiation: s = set(), s = 1, 2, 15.0, 0, ...
Length: len(s)
Add elements: s.add(3)
Access: NO access

Existence: 15.0 in s



None - immutable
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None

instantiation: var = None (capital)
Length: NO length

Access: NO access

Existence: NO existence



Type conversion
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Python is smart in converting basic data types

int(.), float(.), tuple(.), ...
Everything evaluates to a Boolean value

Boolean conversion is even performed implicitly



Quiz
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Which of the following are valid ways to specify strings in Python:

"test"

�

'test" "foo'bar"

�

'foo'bar'

True or false?

“In a dictionary, values are accessed by their position.”

false

“A variable can only reference a single instance at a time.”

true

“Data types are placeholders for instances.”

false

“Instances are placeholders for data types.”

false

“The expression bool('None') evaluates to False.”

false



Quiz
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Which of the following are valid ways to specify strings in Python:

"test"� 'test" "foo'bar"� 'foo'bar'

True or false?

“In a dictionary, values are accessed by their position.” false

“A variable can only reference a single instance at a time.” true

“Data types are placeholders for instances.” false

“Instances are placeholders for data types.” false

“The expression bool('None') evaluates to False.” false
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Data Types &

Mutability
Evaluation

Order

Conditions Comparisons



Operator precedence
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Parentheses ( ... )

Exponents **

Multiplication and Division * / // %

Addition and Substraction + -

https://en.wikibooks.org/wiki/Python_Programming/Basic_Math

https://en.wikibooks.org/wiki/Python_Programming/Basic_Math


Expression evaluation
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Evaluation: operator precedence + left-to-right

Automate the Boring Stuff with Python - Al Sweigart (CC-BY-NC-SA 3.0) chapter 1, figure 1-1, https://automatetheboringstuff.com/chapter1/

https://docs.python.org/3.6/
https://automatetheboringstuff.com/chapter1/


Operator Precedence
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low

high

Operator Description

=, +=, -=, |=, ... Assignment expression

lambda Lambda expression

if - else Conditional expression

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in, is, is not, <, <=, >, >=, !=, == Comparisons, including membership tests and identity tests

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

*, @, /, //, % Multiplication, matrix multiplication, division, floor division, re-
mainder 5

+x, -x, ~x Positive, negative, bitwise NOT

** Exponentiation 6

await x Await expression

x[index], x[index:index], x(arguments...), x
.attribute

Subscription, slicing, call, attribute reference

(expressions...), [expressions...], key:
value..., expressions...

Binding or parenthesized expression, list display, dictionary dis-
play, set display



Quiz
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What is the value of the expression 1 + 2 ** 3 * 4?

33

Which of the following operators has the lowest precedence?

and

�

+ ** % not

Which operation of the expression 'Tiger'[4] + 'oa'* 4 + 'r' is
executed first?

'oa' * 4 'Tiger'[4] + 'oa' 'Tiger'[4]

�

4 + 'r'

source (in part): https://realpython.com/quizzes

https://realpython.com/quizzes


Quiz
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What is the value of the expression 1 + 2 ** 3 * 4? 33

Which of the following operators has the lowest precedence?

and� + ** % not

Which operation of the expression 'Tiger'[4] + 'oa'* 4 + 'r' is
executed first?

'oa' * 4 'Tiger'[4] + 'oa' 'Tiger'[4]� 4 + 'r'

source (in part): https://realpython.com/quizzes

https://realpython.com/quizzes
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Data Types &

Mutability
Evaluation

Order

Conditions Comparisons



Conditional statements: if/else clause
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if �Boolean expression�:
␣␣␣␣�statement� � Mind the indentation!

OR

if �Boolean expression�:
␣␣␣␣�statement�
else:
␣␣␣␣�alternative statement�



Conditional statements: if/else
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1 a = True
2 if a:
3 print('a is True')
4

5 if 'this is a text':
6 print('another true statement')



Conditional statements: if/else
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1 a = True
2 if a:
3 print('a is True')
4 else:
5 print('a is False')
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Data Types &

Mutability
Evaluation

Order

Conditions Comparisons



Boolean operators and comparisons
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Elementary logic: and, or, not

Variables Boolean expression

a b not a a and b a or b

False False True False False
False True True False True
True False False False True
True True False True True



Comparisons: Operators
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== “is equal/equivalent to”

!= “is not equal/equivalent to”

> “is larger than”

< “is is smaller than”

>= “is larger or equal to”

<= “is smaller or equal to”

is “is identical instance of”

is not “is not identical instance of”

in “is contained in collection”

not in “is not contained in collection”



Conditional execution based on comparisons
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1 a = 4.0
2 b = 2.0
3 if not a > b:
4 print('true statement!')



Conditional execution based on comparisons
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1 a = 'this is a text'
2 b = 'this is a text'
3 if a >= b:
4 print('true statement!')



Conditional execution based on comparisons
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1 a = 'this is a text'
2 if a:
3 print('true statement!')



Conditional execution based on comparisons
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1 a = list()
2 b = list()
3 if a is b:
4 print('true statement!')



Conditional execution based on comparisons
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1 a = list()
2 b = list()
3 if a == b:
4 print('true statement!')



Conditional execution based on comparisons
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1 a = list()
2 b = 1
3 if b in a:
4 print('b is contained in collection a')
5 else:
6 print('b is not contained in collection a')



Spyder
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Recap



Summary
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Python data types: int, float, str, tuple, list, dict, ...
Operator precedence

if/else clause

Comparison operators: ==, !=, >, <, is, in, ...



What comes next?
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Familiarize yourself with Spyder

Loops (for loops and while loops)

Write your first program!

Due date for this week’s exercises is Saturday, October 30,

2024.

Next lecture: For loops & while loops ...
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