
Programming
Data types, mutability,

conditions & comparisons

Luna Pianesi

Faculty of Technology, Bielefeld University

Bielefeld University, October 23, 2024

Recap

Programming (Data types, conditions & more) 1

During our last lecture we talked about:

Computer architecture

Overview of Python

Anaconda, Qt Console & Jupyter

Pythons basics

Programming (Data types, conditions & more): Recap 2

Recap

Arithmetic in Python

Programming (Data types, conditions & more): Recap 3

Numeric types:

Integer: int 42
Real valued numbers: float 42.0
Complex numbers: complex 42+0j

Operators

Addition and subtraction + -
Multiplication and division * / // %
Exponentiation **

Variables

Programming (Data types, conditions & more): Recap 4

Variable assignment

a = 42
b = a - 6.0

type(�name of the variable�): returns type of variable

Libraries

Programming (Data types, conditions & more): Recap 5

Importing libraries

import numpy as np
import matplotlib.pyplot as plt

import �name of the library�as �alias�: loads the requested
library under the alias’ name

Programming (Data types, conditions & more): Data Types & Mutability 6

Data Types &

Mutability
Evaluation

Order

Conditions Comparisons

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

We differentiate between type and instance!

Programming (Data types, conditions & more): Data Types & Mutability 7

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

Instances of certain types are immutable , i.e., cannot be changed

after creation

Types, instances, variables

Programming (Data types, conditions & more): Data Types & Mutability 8

We differentiate between type, instance, and variable!

1 a = list()
2 b = a
3 b.append(1)
4 b = 'this is a string'

Lines 1-3: Instance of type list is assigned to

variables a and b.
Line 4: Variable b refers now to a new string

instance

Memory address: id

Programming (Data types, conditions & more): Data Types & Mutability 9

Every instance has a unique address in memory

id(x): memory address of instance of x
x,y reference the same instance if and only if x is equal to y.

Numeric types - immutable

Programming (Data types, conditions & more): Data Types & Mutability 10

int(), float(), complex()

Instantiation: x = 42, x = 42.0 or x = 42+0j
Length: NO len() function
Access: NO access

Existence: NO existence

Frequency: NO frequency

Boolean - immutable

Programming (Data types, conditions & more): Data Types & Mutability 11

bool()

Instantiation: val = True or val = False (capital)
Length: NO len() function
Access: NO access

Existence: NO existence

Frequency: NO frequency

String - immutable

Programming (Data types, conditions & more): Data Types & Mutability 12

str()

Instantiation: s = 'a new string' or s = "a new string"
Length: len(s)
Access:

First: s[0]
Slice: s[1:3]
Last: s[-1]

Existence: 'n' in s or 'new'in s
Frequency: s.count('new')

Tuple - immutable

Programming (Data types, conditions & more): Data Types & Mutability 13

tuple()

Instantiation: t = (1, 'two', 3.0)
Length: len(t)
Access:

First: t[0]
Slice: t[1:3]
Last: t[-1]

Existence: 'two'in t or 3 in t
Frequency: s.count(3.0)

List - mutable

Programming (Data types, conditions & more): Data Types & Mutability 14

list()

Instantiation: l = [1, 2, 3]
Length: len(l)
Add elements: l.append("content")
Access:

first: l[0]
slice: l[1:3]
last: l[-1]

Existence: 2 in l
Location: l.index(3)

Dictionary - mutable

Programming (Data types, conditions & more): Data Types & Mutability 15

dict()

Instantiation: d = dict(), d = {'x': 1, 'y': 2 }, ...
Length: len(d)
Add elements: d['a'] = 'four'
Access: d['a']
Existence: 'a' in d

Set - mutable

Programming (Data types, conditions & more): Data Types & Mutability 16

str()

instantiation: s = set(), s = 1, 2, 15.0, 0, ...
Length: len(s)
Add elements: s.add(3)
Access: NO access

Existence: 15.0 in s

None - immutable

Programming (Data types, conditions & more): Data Types & Mutability 17

None

instantiation: var = None (capital)
Length: NO length

Access: NO access

Existence: NO existence

Type conversion

Programming (Data types, conditions & more): Data Types & Mutability 18

Python is smart in converting basic data types

int(.), float(.), tuple(.), ...
Everything evaluates to a Boolean value

Boolean conversion is even performed implicitly

Quiz

Programming (Data types, conditions & more): Data Types & Mutability 19

Which of the following are valid ways to specify strings in Python:

"test"

�

'test" "foo'bar"

�

'foo'bar'

True or false?

“In a dictionary, values are accessed by their position.”

false

“A variable can only reference a single instance at a time.”

true

“Data types are placeholders for instances.”

false

“Instances are placeholders for data types.”

false

“The expression bool('None') evaluates to False.”

false

Quiz

Programming (Data types, conditions & more): Data Types & Mutability 19

Which of the following are valid ways to specify strings in Python:

"test"� 'test" "foo'bar"� 'foo'bar'

True or false?

“In a dictionary, values are accessed by their position.” false

“A variable can only reference a single instance at a time.” true

“Data types are placeholders for instances.” false

“Instances are placeholders for data types.” false

“The expression bool('None') evaluates to False.” false

Programming (Data types, conditions & more): Evaluation Order 20

Data Types &

Mutability
Evaluation

Order

Conditions Comparisons

Operator precedence

Programming (Data types, conditions & more): Evaluation Order 21

Parentheses (...)

Exponents **

Multiplication and Division * / // %

Addition and Substraction + -

https://en.wikibooks.org/wiki/Python_Programming/Basic_Math

https://en.wikibooks.org/wiki/Python_Programming/Basic_Math

Expression evaluation

Programming (Data types, conditions & more): Evaluation Order 22

Evaluation: operator precedence + left-to-right

Automate the Boring Stuff with Python - Al Sweigart (CC-BY-NC-SA 3.0) chapter 1, figure 1-1, https://automatetheboringstuff.com/chapter1/

https://docs.python.org/3.6/
https://automatetheboringstuff.com/chapter1/

Operator Precedence

Programming (Data types, conditions & more): Evaluation Order 23

low

high

Operator Description

=, +=, -=, |=, ... Assignment expression

lambda Lambda expression

if - else Conditional expression

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in, is, is not, <, <=, >, >=, !=, == Comparisons, including membership tests and identity tests

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

*, @, /, //, % Multiplication, matrix multiplication, division, floor division, re-
mainder 5

+x, -x, ~x Positive, negative, bitwise NOT

** Exponentiation 6

await x Await expression

x[index], x[index:index], x(arguments...), x
.attribute

Subscription, slicing, call, attribute reference

(expressions...), [expressions...], key:
value..., expressions...

Binding or parenthesized expression, list display, dictionary dis-
play, set display

Quiz

Programming (Data types, conditions & more): Evaluation Order 24

What is the value of the expression 1 + 2 ** 3 * 4?

33

Which of the following operators has the lowest precedence?

and

�

+ ** % not

Which operation of the expression 'Tiger'[4] + 'oa'* 4 + 'r' is
executed first?

'oa' * 4 'Tiger'[4] + 'oa' 'Tiger'[4]

�

4 + 'r'

source (in part): https://realpython.com/quizzes

https://realpython.com/quizzes

Quiz

Programming (Data types, conditions & more): Evaluation Order 24

What is the value of the expression 1 + 2 ** 3 * 4? 33

Which of the following operators has the lowest precedence?

and� + ** % not

Which operation of the expression 'Tiger'[4] + 'oa'* 4 + 'r' is
executed first?

'oa' * 4 'Tiger'[4] + 'oa' 'Tiger'[4]� 4 + 'r'

source (in part): https://realpython.com/quizzes

https://realpython.com/quizzes

Programming (Data types, conditions & more): Conditions & Comparisons 25

Data Types &

Mutability
Evaluation

Order

Conditions Comparisons

Conditional statements: if/else clause

Programming (Data types, conditions & more): Conditions & Comparisons 26

if �Boolean expression�:
␣␣␣␣�statement� � Mind the indentation!

OR

if �Boolean expression�:
␣␣␣␣�statement�
else:
␣␣␣␣�alternative statement�

Conditional statements: if/else

Programming (Data types, conditions & more): Conditions & Comparisons 27

1 a = True
2 if a:
3 print('a is True')
4

5 if 'this is a text':
6 print('another true statement')

Conditional statements: if/else

Programming (Data types, conditions & more): Conditions & Comparisons 28

1 a = True
2 if a:
3 print('a is True')
4 else:
5 print('a is False')

Programming (Data types, conditions & more): Comparisons 29

Data Types &

Mutability
Evaluation

Order

Conditions Comparisons

Boolean operators and comparisons

Programming (Data types, conditions & more): Comparisons 30

Elementary logic: and, or, not

Variables Boolean expression

a b not a a and b a or b

False False True False False
False True True False True
True False False False True
True True False True True

Comparisons: Operators

Programming (Data types, conditions & more): Comparisons 31

== “is equal/equivalent to”

!= “is not equal/equivalent to”

> “is larger than”

< “is is smaller than”

>= “is larger or equal to”

<= “is smaller or equal to”

is “is identical instance of”

is not “is not identical instance of”

in “is contained in collection”

not in “is not contained in collection”

Conditional execution based on comparisons

Programming (Data types, conditions & more): Comparisons 32

1 a = 4.0
2 b = 2.0
3 if not a > b:
4 print('true statement!')

Conditional execution based on comparisons

Programming (Data types, conditions & more): Comparisons 33

1 a = 'this is a text'
2 b = 'this is a text'
3 if a >= b:
4 print('true statement!')

Conditional execution based on comparisons

Programming (Data types, conditions & more): Comparisons 34

1 a = 'this is a text'
2 if a:
3 print('true statement!')

Conditional execution based on comparisons

Programming (Data types, conditions & more): Comparisons 35

1 a = list()
2 b = list()
3 if a is b:
4 print('true statement!')

Conditional execution based on comparisons

Programming (Data types, conditions & more): Comparisons 36

1 a = list()
2 b = list()
3 if a == b:
4 print('true statement!')

Conditional execution based on comparisons

Programming (Data types, conditions & more): Comparisons 37

1 a = list()
2 b = 1
3 if b in a:
4 print('b is contained in collection a')
5 else:
6 print('b is not contained in collection a')

Spyder

Programming (Data types, conditions & more): Comparisons 38

Programming (Data types, conditions & more): Recap 39

Recap

Summary

Programming (Data types, conditions & more): Recap 40

Python data types: int, float, str, tuple, list, dict, ...
Operator precedence

if/else clause

Comparison operators: ==, !=, >, <, is, in, ...

What comes next?

Programming (Data types, conditions & more): Recap 41

Familiarize yourself with Spyder

Loops (for loops and while loops)

Write your first program!

Due date for this week’s exercises is Saturday, October 30,

2024.

Next lecture: For loops & while loops ...

	Recap
	Data Types & Mutability
	Evaluation Order
	Conditions & Comparisons
	Comparisons
	Recap

