
Graph Neural Networks in Biology: Lecture 2

Alexander Schönhuth

Bielefeld University
April 22, 2022



CONTENTS TODAY

I Graph Neural Networks: Definition and Simple Examples

I Convolutional Neural Networks



Graph Neural Networks: Definition



GRAPH NEURAL NETWORKS: DEFINITION

DEFINITION [GRAPH NEURAL NETWORK]:
A graph neural network (GNN) is an

I optimizable transformation on

I all attributes of the graph (nodes, eges, global) that

I preserves graph symmetries (permutation invariances)

In the following, we will build GNN’s

I using the message passing neural network framework proposed by
[Gilmer et al., 2017]

I using the Graph Nets architecture introduced by [Battaglia et al.,
2018].



GRAPH NEURAL NETWORKS: DEFINITION

DEFINITION [GRAPH NEURAL NETWORK]:
A graph neural network (GNN) is an

I optimizable transformation on

I all attributes of the graph (nodes, eges, global) that

I preserves graph symmetries (permutation invariances)

I GNN’s adopt a “graph-in, graph-out” architecture:
I Graph loaded with information accepted as input
I Embeddings are progressively transformed
I Connectivity of input graph never changed



Simple Graph Neural Networks



SIMPLE GNN I

Un,Vn,En reflect global, vertex, edge information.
From https://distill.pub/2021/gnn-intro/

I Initial embeddings: U0,V0,E0

I Un,Vn,En, n ≥ 0 iteratively updated to Un+1,Vn+1,En+1 ...
I ... using multilayer perceptions (MLP’s) fUn , fVn , fEn until ...
I ... final layer is reached, where final embeddings are computed.

https://distill.pub/2021/gnn-intro/


PREDICTIONS BY POOLING

From https://distill.pub/2021/gnn-intro/

I May not always be so simple. For example:
I Would like to raise predictions about nodes
I But only edge embeddings available

I Solution: Aggregate (adjacent) edge embeddings using pooling function

ρEn→Vn

https://distill.pub/2021/gnn-intro/


PREDICTIONS BY POOLING II

Aggregating edge embeddings for raising node predictions
From https://distill.pub/2021/gnn-intro/

I Pooling function ρEn→Vn enables node predictions from edge
embeddings

https://distill.pub/2021/gnn-intro/


PREDICTIONS BY POOLING III

Aggregating node embeddings for raising edge predictions
From https://distill.pub/2021/gnn-intro/

I ρVn→En enables edge predictions from node embeddings
I Example: Predict neighboring nodes maintaining particular relationship

https://distill.pub/2021/gnn-intro/


PREDICTIONS BY POOLING IV

Aggregating node embeddings for raising global prediction
From https://distill.pub/2021/gnn-intro/

I ρVn→Un enables prediction about entire graph from node embeddings
I Example: Predict toxicity of molecule from information about atoms

https://distill.pub/2021/gnn-intro/


PREDICTIONS BY POOLING V

GNN: End-to-end predcition task
From https://distill.pub/2021/gnn-intro/

I Classification layer comprises pooling as well, if necessary

I Remark: Classification model can be any differentiable model
I Models other than MLP’s conceivable

https://distill.pub/2021/gnn-intro/


Convolutional Neural Networks (CNNs)



GOAL

Setting up a neural network that correctly classifies 9967 out of 10 000
images; see below for the 33 misclassified ones.

33 misclassified images; correct/predicted classification upper/lower right corner



FULLY CONNECTED NETWORKS

Fully connected neural network with 3 hidden layers

Issue: With fully connected NN’s, we only reach about 98%
accuracy in prediction.

Question: How to get to 99,67% accuracy?



CONVOLUTIONAL NEURAL NETWORKS

Motivation
I Use that images have a spatial structure

+ Neighboring pixels are more likely to belong to the same
structural elements

I Exploit this to speed up training, and reduce number of
parameters (weights)

Basic Ideas
I Local receptive fields
I Shared weights
I Pooling



CONVOLUTIONAL NEURAL NETWORKS
LOCAL RECEPTIVE FIELDS

One image are 28 x 28 = 784 pixels

In a fully connected network

I Every node of the first hidden
layer is connected to every
input neuron (a.k.a pixel)

I Every node of the second
layer is connected to every
neuron in the first hidden
layer



CONVOLUTIONAL NEURAL NETWORKS
LOCAL RECEPTIVE FIELDS

In a convolutional NN,

I Every node in the first
hidden layer is
connected to a
rectangular subregion

I Here: subregion =
square of 5x5=25 input
neurons

Convolutional filter of size 5 x 5

Definition
The region in the input images to which a hidden neuron is
connected is called the local receptive field (LRF) of the hidden neuron.



CONVOLUTIONAL NEURAL NETWORKS
LOCAL RECEPTIVE FIELDS

One receptive field is responsible for one hidden layer

Procedure
I Slide the local receptive field across the entire image

I Stride length: Step size in sliding field (example here: stride = 1)



CONVOLUTIONAL NEURAL NETWORKS
COMPUTING HIDDEN LAYERS

I One hidden layer is generated by one pass of the LRF

I Several hidden layers will be generated by several passes of the
LRF

I The activation al+1
jk of the j, k-th hidden neuron within the layer,

using a M × M LRF, is computed as (σ may represent activation
function of choice)

a(l+1)
jk = σ(b +

M∑
l=0

M∑
m=0

wl,mal
j+l,k+m) (1)



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS

For generating one hidden layer, identical parameters, together defining one
convolutional filter, are used



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS

For generating one hidden layer, identical parameters, together defining one
convolutional filter, are used



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS

Definition
A feature map is a mapping associated with one convolutional filter.

I A complete convolutional layer consists of several hidden
sublayers

I Each sublayer is defined by one feature map



NEURAL NETWORKS
CONVOLUTION FILTERS

Filter for recognizing a curve



NEURAL NETWORKS
CONVOLUTION FILTERS



NEURAL NETWORKS
CONVOLUTION FILTERS



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS REAL WORLD EXAMPLE

MNIST example, 20 different filters

I The darker the more positive, the whiter the more negative
I In reality, convolutional filters are hard to interpret
I Literature: M.D. Zeiler, R. Fergus, “Visualizing and Understanding

Convolutional Networks”, https://arxiv.org/abs/1311.2901

https://arxiv.org/abs/1311.2901


CONVOLUTIONAL NEURAL NETWORKS
SHARED WEIGHTS AND BIASES

I Reminder: The activation al+1
jk of the j, k-th hidden neuron within

the layer, using a M × M LRF, is computed as (σ may represent
activation function of choice)

al+1
jk = σ(b +

M∑
l=0

M∑
m=0

wl,mal
j+l,k+m) (2)

I Observation: For each node in the same hidden layer, the same
parameters wl,m, 1 ≤ l,m ≤ M are used

I That is, we only need M × M parameters to generate the entire
hidden layer



CONVOLUTIONAL NEURAL NETWORKS
SHARED WEIGHTS AND BIASES

MNIST example
:

I Convolutional layer, 20 feature maps, each of size 5 × 5, roughly
requires 20 × 5 × 5 = 500 weights

I Fully connected network, connecting 784 input neurons with 30
hidden neurons requires 784 × 30 = 23 520 weights

I CNN requires roughly 40 times less parameters



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL LAYER

I Remark: Sometimes it helps to think of a convolutional
layer, as a new type of image, where each sublayer refers
to a different color.

I Note that colored pictures of size N × N come in 3 input
layers of size N × N, each of which refers to one of the 3
base colors red, green and blue.

I So, when using M × M-filters, one applies a 3 × M × M
sized tensor (and not an M × M-sized matrix) to the input
layer

I This principle can later be repeated: hence the name tensor
flow.



CONVOLUTIONAL NEURAL NETWORKS
POOLING LAYERS

I In addition to convolutional layers, CNN’s make use of
pooling layers.

I Pooling layers generate condensed feature maps: it takes a
rectangle of neurons, and summarizes their values into one
value

I This generates a considerably smaller layer



CONVOLUTIONAL NEURAL NETWORKS
POOLING LAYERS

2 × 2 pooling

I Max pooling: Each L × L rectangle is mapped onto the maximum of its
values

I L2 pooling: Each L × L rectangle is mapped to the rooted average of the
squares of the values

I This overall yields a layer that is L × L times smaller
I Usually L = 2 is used



CONVOLUTIONAL NEURAL NETWORKS
COMBINING CONVOLUTIONAL AND POOLING LAYERS

Convolutional layer followed by pooling layer

I Convolutional and pooling layers are used in combination

I Pooling layers usually follow convolutional layers

I Intuition:
I The exact location of the occurrence of a feature is not important
I Pooling helps to handle distortions and rotations



CONVOLUTIONAL NEURAL NETWORKS
A COMPLETE CNN

Convolution followed by pooling followed by fully connected output layer

I 10 output nodes, one for each digit

I Each output node is connected to every node of the pooling layer

I Training: Stochastic gradient descent plus backpropagation



CNNS IN PRACTICE
ENSEMBLE OF NETWORKS

Ensemble of networks: Idea
I Train several different networks
I For example, employ repeated random initialization while

always using the same architecture
I For classification, take the majority vote of the different

networks
I While each network performs similarly, the majority vote

may yield improvements
I Here: 5 randomly initialized network of the architecture o

described in the slides before
I Accuracy: 99.67%
I That has been our goal!



CNNS IN PRACTICE
ENSEMBLE OF NETWORKS

I Ensemble of 5 randomly initialized networks
I Architecture as described in the slides before
I Accuracy: 99.67% – that has been our goal!

33 misclassified images; correct/predicted classification upper/lower right corner



CNNS IN PRACTICE
REFERENCES

I Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based
learning applied to document recognition”, http://
yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
[Architecture: “LeNet-5”]

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf


CNNS ON MNIST
FURTHER IMPROVEMENTS

I For further improvements on MNIST (and on famous
datasets in general see
http://rodrigob.github.io/are_we_there_yet/
build/classification_datasets_results.html

I Noteworthy:
I See D.C. Ciresan, U. Meier, L.M. Gambardella,

J. Schmidhuber, “Deep Big Simple Neural Nets Excel on
Handwritten Digit Recognition”,
https://arxiv.org/abs/1003.0358

I Fully connected network, without convolutional layers that
achieves 99.65% accuracy.

I Training for that non-convolutional network proceeds very
slow, however.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
https://arxiv.org/abs/1003.0358


OUTLOOK

I Message Passing

I Convolution on Graphs



Thanks for your attention!


